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Abstract

The relative similarity testing aims to determine which of the distributions, P or
Q, is closer to an anchor distribution U. Existing kernel-based approaches often
test the relative similarity with a fixed kernel in a manually specified alternative
hypothesis, e.g., Q is closer to U than P. Although kernel selection is known to be
important to kernel-based testing methods, the manually specified hypothesis poses
a significant challenge for kernel selection in relative similarity testing: Once the
hypothesis is specified first, we can always find a kernel such that the hypothesis is
rejected. This challenge makes relative similarity testing ill-defined when we want
to select a good kernel after the hypothesis is specified. In this paper, we cope with
this challenge via learning a proper hypothesis and a kernel simultaneously, instead
of learning a kernel after manually specifying the hypothesis. We propose an
anchor-based maximum discrepancy (AMD), which defines the relative similarity
as the maximum discrepancy between the distances of (U,P) and (U,Q) in a space
of deep kernels. Based on AMD, our testing incorporates two phases. In Phase I,
we estimate the AMD over the deep kernel space and infer the potential hypothesis.
In Phase II, we assess the statistical significance of the potential hypothesis, where
we propose a unified testing framework to derive thresholds for tests over different
possible hypotheses from Phase I. Lastly, we validate our method theoretically and
demonstrate its effectiveness via extensive experiments on benchmark datasets.
Codes are publicly available at: https://github.com/zhijianzhouml/AMD.

1 Introduction

Assessing differences between distributions is an important research area in machine learning,
especially for tasks that often involve various distributions, e.g., different training and test data
distributions in many real-world scenarios [1]. For such tasks, two-sample testing has been developed
as a principled method to assess whether two distributions are identical [2]. However, it becomes less
effective when the task requires comparing three or more distributions. For example, in scenarios
where multiple models are available for a given test dataset, selecting the model trained on data most
similar to the test data is essential for optimal performance. Additionally, in studies with generative
data, including those arising from generative models [3], adversarial attacks [4], data augmentation
[5] and machine generated text detection [6], a key challenge is to assess relative similarity between
different generative data distributions and the original data distribution.

Fortunately, relative similarity testing provides a framework to assess which of the distributions, P or
Q, is closer to the anchor distribution U; in practice, these distributions are typically unknown, and we
can only observe samples from them. Existing methods evaluate the relative similarity between the
pairs (U,P) and (U,Q) by comparing the discrepancy between their distances, d(U,P) and d(U,Q).
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A popular distance is the integral probability metric (IPM) [7, 8], which defines the distance between
two distributions as the maximum discrepancy between their expectations over a specified class of
functions, offering strong theoretical guarantees and adaptability across various scenarios through the
choice of function classes. The kernel-based maximum mean discrepancy (MMD) is an instance of
IPM [9, 10], providing an effective measure for assessing distributional discrepancy [2, 11, 12], and
is well-suited for applications in relative similarity testing [13, 14]. Some methods use kernelized
Stein discrepancy, another instance of IPM, to evaluate similarity in cases where U is known [15–18].

Prior to conducting hypothesis testing, it is typically necessary to formulate the null and alternative
hypotheses. Previous methods for relative similarity testing follow this procedure by manually
specifying a relationship in the alternative hypothesis and performing the test accordingly. For
example, given the specified relationship d(U,P) > d(U,Q), they define the hypotheses as follows

H ′
0 : d(U,P) ≤ d(U,Q) and H ′

1 : d(U,P) > d(U,Q);

and then the difference between distances, i.e., d(U,P)− d(U,Q), is estimated and compared against
a positive threshold to test the prespecified relative similarity relationship [13]. Consequently, instead
of testing which of P or Q is closer to U, these methods evaluate whether Q is closer to U than P.

Influence of Manually Specified Hypothesis in Oriented Test. This type of oriented test focuses
on evidence supporting d(U,P) > d(U,Q), and potentially neglects cases where d(U,P) ≤ d(U,Q).
We consider a scenario where d(U,P) ≤ d(U,Q) and analyze the probability ϵ of correctly identifying
this relative similarity relationship. It is evident that ϵ is equal to 1 − α in the oracle hypothesis
setting, which corresponds to the probability of accepting the null hypothesis H ′

0 : d(U,P) ≤ d(U,Q)
given the significance level α. This implies that there is a probability of α of neglecting the case
d(U,P) ≤ d(U,Q), regardless of the amount of data or the kernel used for testing. Thus, it is crucial
to construct an alternative hypothesis that reflects the potential true relative similarity relationship,
which is unknown in practice. Without prior knowledge, randomly selecting an alternative hypothesis
results in a success rate of merely 0.5.

Kernel Selection Challenge for Existing Relative Similarity Tests. More importantly, in kernel-
based test, it is critical to select a kernel to effectively capture the evidence that supports the alternative
hypothesis [19], and the relative similarity relationship may vary with the choice of kernel from the
same family, such as Gaussian kernels. For instance, with a Gaussian kernel κA, the relationship
d(U,P) > d(U,Q) may hold, while with Gaussian kernel κB , d(U,P) < d(U,Q) holds instead.
Given this, after we specify a relative similarity relationship in alternative hypothesis as in H ′

1, the
method then tends to select a kernel that best supports d(U,P) > d(U,Q). This deviates from the
primary goal of testing which distribution, P or Q, is closer to the anchor distribution U. A median
heuristics selects the Gaussian kernel bandwidth by averaging median distances between samples
from U and P, and those from U and Q [13], but it has no guarantees of effective performance in
various scenarios [20, 19] or with complex data (e.g., images) [21, 22]. Moreover, it restricts the use
of more expressive kernels, such as deep kernel [21] and Mahalanobis kernel [23].

Our Solution. In this paper, we cope with the above challenges via learning a proper hypothesis
and a kernel simultaneously, instead of learning a kernel after manually specifying the hypothesis.
We propose an anchor-based maximum discrepancy (AMD), which defines the relative similarity
as the maximum discrepancy between the distances of (U,P) and (U,Q) in a space of deep kernels
(motivated by the definition of IPM). This approach inherently incorporates kernel selection and
avoids a selection towards a prespecified relative similarity relationship, e.g., d(U,P) > d(U,Q).
Based on the AMD metric, our relative similarity testing incorporates two phases

• In Phase I (Section 3.2), we estimate the AMD by selecting the kernel that maximizes the
discrepancy between the distances of (U,P) and (U,Q) from a kernel space. Given this estimation,
we infer the potential relative similarity relationship, that is, which distribution, P or Q, is closer
to U, instead of manually specifying an interested relationship. Here, to ensure a sufficiently rich
function space and enhance adaptability across various tasks, we use deep kernels built upon
neural networks [21] and propose an optimization algorithm to estimate the AMD with augmented
samples, which improves generalization and reduces overfitting for small sample sizes [24–26].

• In Phase II (Section 3.3), to assess the statistical significance of the relative similarity relationship
identified in Phase 1, we perform the AMD test with the selected kernel from Phase I. In this
procedure, we consider the tests on two possible relative similarity relationships, i.e., P is closer
to U or Q is closer to U. For this, we propose a unified testing framework to derive the testing
thresholds for both cases using the wild bootstrap method.
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Theoretically, our AMD serves as a valid metric, and its estimation with data augmentation is proven
to exhibit consistency. Besides, we analyze the advantage of our AMD test in test power, while
ensuring that the type-I error is bounded at the significance level. Empirically, we validate the AMD
test against state-of-the-art methods on benchmark datasets, and further conduct ablation studies to
evaluate the contribution of each component. We also illustrate practical applications of our AMD
test in comparing model performance across different datasets relative to a reference dataset.

2 Preliminaries

Integral Probability Metric. Let P and Q denote two Borel probability measures over a space
X ⊆ Rd. For a class F of functions, the integral probability metric (IPM) [7] is defined as the
distance between the distributions P and Q, as

d(P,Q;F) = sup
f∈F

∣∣∣∣∫ f dP−
∫

f dQ
∣∣∣∣ .

This framework is particularly relevant in two-sample test, which aims to assess the equality between
two unknown distributions. Numerous approaches have been proposed to find distance measures
of this form, aimed at distinguishing between various distributions. Among them, a widely used
approach is the kernel-based Maximum Mean Discrepancy (MMD), which corresponds to an IPM
defined over the function classHκ, i.e., the Reproducing Kernel Hilbert space (RKHS) of a kernel
κ : X ×X → R. The MMD serves as an effective distance for measuring the similarity between two
distributions, satisfying MMD(P,Q;κ) = 0 if and only if P = Q for characteristic kernels [9].

Relative Similarity Testing with MMD. Using the squared MMD as similarity measure and given
the anchor Borel probability measure U over X ⊆ Rd, Bounliphone et al. [13] test whether Q is
closer to U than P by formulating the hypotheses as follows:

H ′
0 : MMD2(U,P;κ) ≤ MMD2(U,Q;κ) and H ′

1 : MMD2(U,P;κ) > MMD2(U,Q;κ) .

Given the alternative hypothesis, the test statistic is defined as MMD2(U,P;κ)−MMD2(U,Q;κ),
which can be equivalently expressed using the IPM as:[

sup
f∈Hκ

∣∣∣∣∫ f dU−
∫

f dP
∣∣∣∣
]2
−
[
sup
g∈Hκ

∣∣∣∣∫ g dU−
∫

g dQ
∣∣∣∣]2 .

In practice, the three distributions U, P and Q are generally unknown and what we can observe are
three samples Z = {zi}mi=1 ∼ Um, X = {xi}mi=1 ∼ Pm and Y = {yi}mi=1 ∼ Qm1. By estimating

the test statistic using samples, i.e., M̂MD
2
(Z,X;κ)− M̂MD

2
(Z, Y ;κ), and comparing it against a

positive testing threshold corresponding to the given significance level α, this approach effectively
focuses on testing evidence in favor of the alternative hypothesis H ′

1. Furthermore, in kernel-based
testing, it is critical to select a kernel to effectively capture the evidence that supports the alternative
hypothesis, which leads to selecting a kernel favoured at the prespecified alternative hypothesis.

3 The AMD Relative Similarity Testing

As demonstrated in Section 1, although kernel selection is known to be important to kernel-based
testing methods, the manually specified hypothesis poses a significant challenge for kernel selection
in relative similarity testing: Once the hypothesis is specified first, we can always find a kernel such
that the hypothesis is rejected. This challenge makes relative similarity testing ill-defined when we
want to select a good kernel after the hypothesis is specified. In this section, we cope with the above
challenges via learning a proper hypothesis and a kernel simultaneously, instead of learning a kernel
after manually specifying the hypothesis.

We first introduce the relative similarity measure anchor-based maximum discrepancy (AMD) in
Section 3.1; then in Section 3.2, we present the Phase I of AMD test: estimating AMD and inferring a
potential relative similarity relationship, i.e., learning a proper hypothesis and a kernel simultaneously.
Finally, in Phase II (Section 3.3), we test the statistical significance of the relationship from Phase I.

1As done in Liu et al. [21], we assume equal size for three samples to simplify the notation, yet the results in
this paper can be easily extended to unequal sample sizes following approaches based on the U -statistic [27, 9].
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3.1 The Anchor-based Maximum Discrepancy (AMD)

As introduced in Section 1, IPM is an effective metric in measuring the discrepancy between two
distributions with strong theoretical guarantees and adaptability across various scenarios through the
choice of function classes. Here, we extend it to the relative similarity testing with three distributions,
which measures the maximum discrepancy between the distances of (U,P) and (U,Q). Specifically,
we define the anchor-based maximum discrepancy (AMD) as follows

Definition 1. For each kernel κ in the kernel family K, we define function fκ = ⟨·,µP −µQ⟩Hκ
and

introduce the corresponding function space FK = {fκ|κ ∈ K}. The AMD, i.e., d(U,P,Q;FK), is

sup
fκ∈FK

∣∣∣∣∫ fκ dU−
∫

fκ d
P+Q

2

∣∣∣∣ = sup
κ∈K

∣∣∣∣⟨µU −
µP + µQ

2
,µP − µQ⟩Hκ

∣∣∣∣ , (1)

where µU = Ez∼U[κ(·, z)] and µP,µQ are defined similarly with κ(·,x) ∈ Hκ as the feature map.

In AMD, we measure the relative similarity between distributions by their characteristic kernel mean
embeddings (i.e., µU, µP, and µQ). These embeddings uniquely represent probability distributions
and capture their distinct characteristics for comparison [28]. The reason to choose such an fκ is that
the Euclidean-like distances (i.e. MMD distances) ∥µU − µP∥2Hκ

and ∥µU − µQ∥2Hκ
are equal in

RKHSHκ if and only if µU − (µP +µQ)/2 is orthogonal to vector µP −µQ. Here, AMD measures
relative similarity as the maximum discrepancy within the kernel space K, avoiding oriented kernel
selection arising from prespecified relative similarity relationship, as discussed in Section 1.

We now prove that our AMD (i.e., Eqn. (1)) is a valid metric as follows.

Theorem 2. LetM be a set of probability measures over the space X ⊆ Rd, and let K be a kernel
space consisting of characteristic kernels. For every U,P,Q,W ∈M, the three random variables
d(U,P,Q;FK), d(U,P,W;FK) and d(U,Q,W;FK) satisfy:

• d(U,P,Q;FK) ≥ 0;
• d(U,P,Q;FK) = d(U,Q,P;FK);
• d(U,P,Q;FK) ≤ d(U,P,W;FK) + d(U,Q,W;FK).

3.2 Phase 1: Estimating AMD and Infer the Potential Relative Similarity Relationship

Based on Eqn. (1), AMD can be expressed as d(U,P,Q;FK) = supκ∈K |dκ(U,P,Q)| with

dκ(U,P,Q) =

〈
µU −

µP + µQ

2
,µP − µQ

〉
Hκ

= E

[
κ(z,x)− κ(z,y)− κ(x,x′)

2
+

κ(y,y′)

2

]
,

where z ∼ U, x,x′ ∼ P2 and y,y′ ∼ Q2. Here, by the geometric relationship between the
vectors µU − (µP + µQ)/2 and µP − µQ, we interpret the sign of dκ(U,P,Q) as an indicator
of relative similarity relationship: sgn(dκ(U,P,Q)) = 1 indicates that P is closer to U; while
sgn(dκ(U,P,Q)) = −1 indicates that Q is closer to U.

For unknown distributions U, P and Q with corresponding samples Z = {zi}mi=1 ∼ Um, X =
{xi}mi=1 ∼ Pm and Y = {yi}mi=1 ∼ Qm, we estimate the measure dκ(U,P,Q) use the U-statistc
estimator, known to be the unbiased estimator with minimum variance [27], as follows

d̂κ(Z,X, Y ) =
∑
i̸=j

κ(zi,xj) + κ(zj ,xi)− κ(zi,yj)− κ(zj ,yi)− κ(xi,xj) + κ(yi,yj)

2m(m− 1)
. (2)

Estimating the AMD is equivalent to selecting the optimal kernel that maximizes the statistic
d̂κ(Z,X, Y ), which can be formulated as the following optimization objective

κ∗
m ∈ argmax

κ∈K
|d̂κ(Z,X, Y )| . (3)

The absolute value introduces challenges to optimization. A common strategy to address this is to
optimize the squared form, i.e. d̂κ(Z,X, Y )2, which would enhances differentiability and facilitates a
smoother optimization [29]. However, this method has a drawback: it is highly sensitive to outliers or
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data points with large values [30], especially in high-density regions. This can overshadow important
patterns in lower-density regions, potentially leading to an incomplete understanding of data.

To mitigate this issue, the optimization is divided into two separate cases: 1) d̂κ(Z,X, Y ) > 0;
2) d̂κ(Z,X, Y ) < 0. For each case, the optimal kernel is selected independently, and the final kernel
is chosen as the one that achieves the highest absolute value of the metric. Treating these cases
individually helps to better capture the characteristics of the data in both high- and low-density regions.
Yet, this approach may still result in sub-optimal solutions. This is because directly maximizing
or minimizing the estimator can amplify specific data patterns excessively, increasing the risk of
overfitting [], particularly when sample size is limited and when a deep kernel2 is employed as in [21]

κ(x,y) = [(1− ϵ)G1(ϕω(x), ϕω(y)) + ϵ]G2(x,y) , (4)
with Gaussian kernels G1 and G2, and a neural network ϕω .

Augmentation-assisted Estimation of AMD. We mitigate the overfitting issue via an iterative
optimization process known as data augmentation [5]. However, the distribution of augmented
samples normally deviates from that of the original samples, which leads to an inconsistent estimation
of the AMD metric. Here, we construct augmented samples Zaug, Xaug and Y aug under the condition
that E[d̂κ(Zaug, Xaug, Y aug)] = 0 to ensure the consistency. Specifically, at each iteration, with U
as the anchor distribution, we generate Zaug = {zaug

i }mi=1 ∼ Zm, which is an i.i.d copy of Z and
maintains statistical properties of U. Then, for Xaug = {xaug

i }mi=1 and Y aug = {yaug
i }mi=1, we have

xaug
i = 0.5x+ 0.5y and yaug

i = 0.5x′ + 0.5y′ with x,x′ ∼ X, y,y′ ∼ Y . (5)
It is evident that two samples Xaug and Y aug are drawn from the identical distribution, and are thus
equally close to the anchor distribution U satisfying the condition E[d̂κ(Zaug, Xaug, Y aug)] = 0. We
take d̂κ(Zaug, Xaug, Y aug) as a regularization term to avoid overfitting and focus the optimization on
d̂κ(Z,X, Y ), which is the main objective for estimating the AMD. For case d̂κ(Z,X, Y ) > 0, the
optimization with a regularization parameter 0 ≤ λ <∞ is

κ∗,+
m ∈ argmax

κ∈K
d̂κ(Z,X, Y )− λ · d̂κ(Zaug, Xaug, Y aug)2 ;

in a similar manner, for d̂κ(Z,X, Y ) < 0, we perform optimization as

κ∗,−
m ∈ argmin

κ∈K
d̂κ(Z,X, Y ) + λ · d̂κ(Zaug, Xaug, Y aug)2 .

With an expected value of zero, the statistic d̂κ(Zaug, Xaug, Y aug) actually reflects sampling variability.
We square it as regularization term to account for reduce the impact of fluctuations where the empirical
estimator differs from its expected value, thereby mitigating the overfitting in the estimation.

Finally, we select the optimal kernel as follows

κ∗
m = argmax

κ∈{κ∗,+
m ,κ∗,−

m }
|d̂κ(Z,X, Y )| . (6)

Infer the potential relative similarity relationship. Unlike previous approaches that manually
specify a relative similarity relationship in alternative hypothesis, our method allows for inferring the
potential relationship with kernel κ∗

m. The inferred relationship is denoted by F , where

• F = 1 if κ∗
m = κ∗,+

m , indicating that distribution P is closer to the anchor distribution U.
• F = −1 if κ∗

m = κ∗,−
m , indicating that distribution Q is closer to the anchor distribution U.

Consistency of the Estimation. We now establish the consistency of estimating d(U,P,Q;FK) via
the optimization procedure with augmented samples, under Assumption 1 (Appendix A.2).
Theorem 3. Let K be a kernel space consisting of symmetric kernels κ satisfying 0 ≤ κ(x,y) ≤ B
for all x,y ∈ X . Then, as m→∞ and 0 ≤ λ <∞, the following holds

F · dκ
∗
m(Z,X, Y )− d(U,P,Q;FK)

a.s.−−→ 0 .

This theorem shows that, although we perform estimation with augmented data, the estimator
F · dκ∗

m(Z,X, Y ) almost surely converges to the true AMD value as sample size approaches infinity.
2Our methods are also applicable to Laplace [12], Mahalanobis [23] and Gaussian kernels [31], etc, which

can be optimizaed with
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3.3 Phase II: Testing the Statistical Significance of Potential Relative Similarity Relationship

Next, we assess the statistical significance of the relative similarity relationship identified in Phase
I. In the testing procedure, we use testing samples Z ′ = {z′

i}mi=1 ∼ Um, X ′ = {x′
i}mi=1 ∼ Pm and

Y ′ = {y′
i}mi=1 ∼ Qm, which are drawn independently of Z, X , and Y . This follows the data-splitting

strategy commonly used in kernel-based hypothesis testing to ensure the validity of the test [21].

Given F from Phase 1, we consider tests for both relative similarity relationships with dκ
∗
m(U,P,Q)

(i.e., a single kernel form of AMD with the consistently estimated kernel κ∗
m), which is defined as

• For F = 1, indicating a potential relationship that P is closer to U, we test on hypotheses

H0 : dκ
∗
m(U,P,Q) ≤ 0 and H1 : dκ

∗
m(U,P,Q) > 0 .

Here, given the testing threshold τα > 0 for a significance level α, we conclude that P is
significantly closer to U than P at level α if test statistic satisfies d̂κ

∗
m(Z ′, X ′, Y ′) > τα.

• For F = −1, indicating a potential relationship that Q is closer to U, we test on hypotheses

H0 : dκ
∗
m(U,P,Q) ≥ 0 and H1 : dκ

∗
m(U,P,Q) < 0 .

In a similar manner, given the testing threshold τα < 0 for a significance level α, we conclude
that Q is significantly closer to U than Q at level α if test statistic satisfies d̂κ

∗
m(Z ′, X ′, Y ′) < τα.

Then, based on the value of F , we can unify the above hypotheses as one:

Huni
0 : F · dκ

∗
m(U,P,Q) ≤ 0 and Huni

1 : F · dκ
∗
m(U,P,Q) > 0 .

Given the testing threshold F · τα > 0, the testing procedures can be formalized as

h(Z ′, X ′, Y ′;κ∗
m) = I[F · d̂κ

∗
m(Z ′, X ′, Y ′) > F · τα] , (7)

where h(Z ′, X ′, Y ′;κ∗
m) = 1 indicates that the inferred relative similarity relationship presented by

F is statistically significant at level α; otherwise, the relationship is not statistically significant.

The critical step here is to determine the testing threshold F · τα, which bounds the type-I error under
the null hypothesis, i.e., Pr (h(Z ′, X ′, Y ′;κ∗

m) = 1) ≤ α. Notably, the unified null hypothesis Huni
0

is composite, consisting of the case F · dκ∗
m(U,P,Q) = 0 and the case where F · dκ∗

m(U,P,Q) < 0.
Since the ground-truth dκ

∗
m(U,P,Q) is unknown, we set testing threshold F · τα as the (1 − α)-

quantile of the estimated distribution of F · d̂κ∗
m(Z ′, X ′, Y ′) under the proxy null hypothesis Hp

0 :

F · dκ∗
m(U,P,Q) = 0 (i.e., the least-favorable boundary of the composite null hypothesis) by wild

bootstrap. Specifically, let B be the number of bootstraps. In the b-th iteration (b ∈ [B]), we draw
i.i.d. variables ξ = (ξ1, ..., ξm) from Exponential distribution with scale parameter 1 and define

ζ = {ζi}mi=1 with ζi = m · ξi/
m∑
j

ξj .

Then, we calculate the b-th wild bootstrap statistic for d̂κ
∗
m(Z ′, X ′, Y ′) as follows

Tb =
∑
i̸=j

(ζiζj − 1)×
κ(z′

i,x
′
j) + κ(z′

j ,x
′
i)− κ(z′

i,y
′
j)− κ(z′

j ,y
′
i)− κ(x′

i,x
′
j) + κ(y′

i,y
′
j)

2m(m− 1)
.

During such process, we obtain B statistics T1, T2, ..., TB and introduce testing threshold F · τα with

τα = argmin
τ

{
B∑

b=1

I[F · Tb ≤ F · τ ]
B

≥ 1− α

}
. (8)

We present theoretical analysis for type-I error as follows.
Lemma 4. The type-I error of the unified testing procedure is bounded by α.

Output of our AMD relative similarity test. The output consist of two components: F from Phase
1 and h(Z ′, X ′, Y ′;κ∗

m) from Phase 2. The term F specifies the nature of the potential relative
similarity relationship: 1) F = 1 indicates P is closer to U; 2) F = −1 indicates Q is closer to U.
The term h(Z ′, X ′, Y ′;κ∗

m) determines whether the inferred relationship F is significant at level α.

We present the details of our AMD relative similarity testing in Algorithm 1. To help situate our
methodology and highlight key differences, we introduce relevant works in Appendix B.

6



Algorithm 1 The AMD test
Input: Training Samples Z, X and Y , Iteration Epochs T for training, Testing Samples Z ′, X ′ and
Y ′, Iteration Epochs B for testing
Initialization: Select κ∗,+

m = κ∗,−
m according to the median heuristic [13].

# Phase 1: Select Kernel κ∗
m and relationship F

for t = 1, . . . , T do
Randomly generate augmented samples Zaug, Xaug and Y aug as specified in Eqn. (5)
κ∗,+
m ← κ∗,+

m + η · ∇
(
d̂κ

∗,+
m (Z,X, Y )− λ · d̂κ∗,+

m (Zaug, Xaug, Y aug)2
)

κ∗,−
m ← κ∗,−

m − η · ∇
(
d̂κ

∗,−
m (Z,X, Y ) + λ · d̂κ∗,−

m (Zaug, Xaug, Y aug)2
)

end for
Select κ∗

m as in Eqn. (6) and relative similarity relationship F

# Phase 2: testing with kernel κ∗
m and relationship F

for b = 1, . . . , B do
Draw ξ = (ξ1, ξ2, ..., ξm) from distribution Exp(1)
Let ζ = {ζi}mi=1 with ζi = m · ξi/

∑m
j ξj

Tb ← 1
m(m−1)

∑
i̸=j(ζiζj − 1)h

κ∗
m

i,j (Z
′, X ′, Y ′)/2

end for
τα ← argmin

τ

{∑B
b=1

I[F ·Tb≤F ·τ ]
B ≥ 1− α

}
h(Z ′, X ′, Y ′;κ∗

m) = I[F · d̂κ∗
m(Z ′, X ′, Y ′) > τα]

Output: h(Z ′, X ′, Y ′;κ∗
m) and F .

4 Asymptotic Test Power Comparison of Testing Procedures

Next, to analyze the advantages of our method in test power, we consider a practical scenario in
which a relative similarity relationship is present, indicated by dκ

∗
m(U,P,Q) ̸= 0. However, the

specific nature of this relationship, represented by sgn(dκ
∗
m(U,P,Q)) ∈ {−1, 1}, remains unknown.

Building on this, we denote the probability that F captures the true relative similarity relationship as

β = Pr[F · dκ
∗
m(U,P,Q) > 0] . (9)

Comparison with the test on a uniformly selected alternative hypothesis. Previous methods [13,
14] require manually specifying a relative similarity relationship in alternative hypothesis (e.g.,
dκ

∗
m(U,P,Q) > 0) and perform test accordingly. Yet, the prespecified relationship may not align

with the true relationship. In the practical scenario, if we uniformly select an alternative hypothesis,
the probability that it reflects the true relative similarity relationship is 0.5.

Now, we present the comparison of test power with a uniformly selected alternative hypothesis as

Theorem 5. If dκ
∗
m(U,P,Q) ̸= 0, the test based on the learned alternative hypothesis with F

achieves a higher test power than that based on a uniformly selected alternative hypothesis as follows

(β − 0.5)Φ

(√
m
|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
+O(e−m) ,

where where Φ(·) is the cumulative distribution function of the standard normal distribution and
σU,P,Q is the same to that in Corollary 9.

In Theorems 5, as sample size m increases, the term O(e−m) decays to 0 exponentially, and the term

Φ
(√

m |dκ∗
m (U,P,Q)|−F ·τα

σU,P,Q

)
converges to 1. To ensure that the test based on the learned alternative

hypothesis with F achieves a higher test power than that based on a uniformly selected alternative
hypothesis, it is necessary to ensure a large value of β > 0.5. Fortunately, as shown in Figure 2, the
probability β can readily converge to 1 even with limited data.
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Figure 1: The comparisons between AMD test and baselines. We set U = νP+(1−ν)Q with ν ∈ [0, 1]. When
ν < 0.5, Q is closer to U, and previous approaches perform well in terms of rejection rates (i.e., test power),
as this aligns with the prespecified alternative hypothesis H ′

1 : d(U,P) > d(U,Q); however, when ν > 0.5,
their performance deteriorates as P is closer to U. In comparison, our AMD test performs well for both ν < 0.5
and ν > 0.5 by adjusting alternative hypothesis with F . Notably, when ν = 0.5 (i.e., no relative similarity
relationship exists), all methods control the rejection rate (type-I error) at level α = 0.05 (black dashed line). The
p-values align with the findings derived from the rejection rates, demonstrating the effectiveness of AMD test.
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Figure 2: Probability β = Pr[F · dκ
∗
m(U,P,Q) > 0]

versus sample size with parameter ν = 0.3.
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Figure 3: Influence of the regularization parameter λ
in AMD relative similarity testing.

5 Experiments

We first conduct experiments to compare AMD test with state-of-the-art tests on benchmark datasets,
demonstrating its effectiveness. We also perform ablation studies to evaluate the contribution of each
component in our method. Finally, we validate the proposed AMD test in practical applications.
Notably, in all experiments, we utilize the selected deep kernels as defined in Eqn. (4). More details
and results of experiments, including the results of type-I error, can be found in Appendix D.

5.1 Comparison with Baseline Tests on Benchmark Datasets

We begin by comparing AMD test with state-of-the-art relative similarity tests (Appendix D.1):
1) MMD-D [13, 21]; 2) KLFI [14]; 3) MMD-H [13]; 4) UME [15]; 5) SHCE [32]; 6) LBI [33].
Following the setups in [13, 14], we adapt MNIST and CIFAR10 as benchmark datasets, both of
which comprise original and generative images. We set the sample size to 50 for CIFAR10 and 160
for MNIST. We denote by P the original images and Q the generative images, and set the U as

U = νP+ (1− ν)Q with ν ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} .

If ν < 0.5, then the distribution Q is closer to U; whereas if ν > 0.5, the distribution P is closer
to U. When ν = 0.5, P and Q are equally close to U, and accordingly, the test should not report a
significant relative similarity relationship exists (i.e., no alternative hypothesis should be accepted).

In practice, when a relative similarity relationship exists, it is unknown which distribution, P or Q,
is closer to U. However, existing methods are designed to test a prespecified alternative hypothesis,
e.g., H ′

1 : d(U,P) > d(U,Q). As shown in Figure 1, under this setting, they perform well in terms
of rejection rate (i.e., test power) when ν < 0.5, as this aligns with the assumed alternative H ′

1.
In contrast, their performance deteriorates when ν > 0.5. In comparison, our AMD test achieves
high rejection rate for both ν < 0.5 and ν > 0.5 by adjusting the alternative hypothesis with F .
Here, the rejection rate is larger when |0.5− ν| is larger, since the relative similarity relationship is
more pronounced and easier to detect by the test. Notably, when ν = 0.5 (i.e., no relative similarity
relationship exists), all methods can control the rejection rate (type-I error) at level α = 0.05 (the
black dashed line). The p-values in Figure 1 align with the findings derived from the test power,
providing additional support for the effectiveness of AMD test.
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Table 1: MNIST: Test power vs sample size m for AMD test, with and without data augmentation, and the bold
denotes the highest mean test power.

m 130 160 190 220 250 280 310 340
AMD .277 ± .043 .409 ± .036 .604 ± .049 .761 ± .049 .779 ± .048 .827 ± .037 .867 ± .028 .969 ± .012

AMD-NA .224 ± .038 .353 ± .041 .517 ± .049 .691 ± .051 .723 ± .060 .790 ± .033 .829 ± .038 .931 ± .033

Table 2: CIFAR10: Test power vs sample size m for AMD test, with and without data augmentation, and the
bold denotes the highest mean test power.

m 20 40 60 80 100 120 140 160
AMD .306 ± .038 .477 ± .026 .627 ± .044 .775 ± .021 .868 ± .017 .871 ± .028 .942 ± .009 .968 ± .007

AMD-NA .300 ± .046 .455 ± .028 .590 ± .051 .744 ± .027 .845 ± .020 .851 ± .021 .919 ± .011 .952 ± .009

Ablation Studies. Figure 2 illustrates that β = Pr[F · dκ∗
m(U,P,Q) > 0] approaches 1 even with a

limited data sample. This result highlights the capability of AMD test to achieve higher test power by
utilizing adjusted alternative hypothesis with F , as supported by Theorems 5. Figure 3 illustrates
the impact of the regularization parameter λ on optimization with data augmentation. The results
indicate that λ can be selected within a relatively broad range, specifically [10−8, 103] for CIFAR10
and [10−8, 101] for MNIST. Tables 1 and 2 present comparisons of test power versus sample size for
AMD test with and without augmented data (referred to as AMD-NA). The results demonstrate that
incorporating augmented data facilitates improved kernel selection, enabling the test to achieve higher
test power. More ablation studies, including comparisons with test on both alternative hypotheses
and previous methods combined with our Phase I, are provided in Appendix D.3.

5.2 Performing Relative Similarity Testing in Practical Applications

We present two case studies to illustrate the practical application of our AMD test.

Relative Model Performance Evaluation. In the first case study (motivated by [34]), for a pre-
trained ResNet50 model that performs well on the original ImageNet, we aim to assess its performance
across different variants of ImageNet. A natural metric is the margin between model accuracies
of the original ImageNet and its variant, with a smaller difference indicating more similar model
performance on the two datasets (Appendix D.2). For the variants ImageNet-{SK, R, V2, A}, the
accuracy differences, calculated using ground-truth labels, are {0.529, 0.564, 0.751, 0.827}.

Yet, obtaining ground truth labels for ImageNet variants is often challenging or costly. Given this, we
illustrate that relative model performance can be evaluated using our AMD test without labels. The
key is to ensure that AMD captures the same relative similarity relationships as indicated by accuracy
margins, effectively supporting relative similarity testing. Here, we set the original ImageNet as U,
and sequentially set each of the variants (ImageNet-{R, V2, A, SK}) as P. Besides, we sequentially
set each of the variants (ImageNet-{SK, R, V2, A}) as Q. By testing which distribution, P or Q, is
closer to U, Figure 4 shows that our AMD achieves higher test power than MMD-D. Specifically,
MMD-D fails to evaluate the relative similarity between ImageNet-SK (i.e., P) and ImageNet-A (i.e.,
Q) as it assumes Q is closer to U under the alternative hypothesis.
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Figure 5: Comparisons in detecting whether the adver-
sarial perturbations on CIFAR-10 exceeding 4/255.

Adversarial Perturbation Detection. In the sec-
ond case study, inspired by [4, 35], we illustrate
that the AMD test can be used to assess the level
of adversarial perturbation applied to CIFAR10.
We employ ResNet18 as the base model and im-
plement the PGD attack [36] on CIFAR-10, us-
ing perturbation levels in { i

255}
10
i=1. As expected,

larger perturbations result in a dataset that devi-
ates more from the original dataset. Given this,
we denote the original CIFAR-10 as U and the
4/255-perturbed CIFAR-10 as Q. Besides, we
set P as the CIFAR-10 with perturbation level in {i/255}10i=1 and perform testing with a sample size
of 170. As shown in Figure 5, our AMD outperforms MMD-D and effectively evaluates adversarial
perturbation levels. Specifically, MMD-D fails to evaluate the perturbation levels when P is closer
to U (i.e., P is CIFAR-10 with perturbation level in {i/255}3i=1), as it assumes Q is closer to U
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Figure 4: Test Power comparison between AMD and MMD-D in identifying which unlabeled variant of
ImageNet the ResNet50 model (pre-trained on ImageNet) performs better on.

under the alternative hypothesis. When P is the CIFAR-10 with perturbation 4/255, P = Q and the
rejection rates (type-I error) of two methods are controlled at the level α = 0.05.

6 Conclusion

This work introduces a new kernel-based relative similarity test by proposing the anchor-based
maximum discrepancy (AMD), which defines the relative similarity as the maximum discrepancy
between the distances of (U,P) and (U,Q) in a space of deep kernels. Building on this metric, we
learn a proper hypothesis and a kernel simultaneously, instead of learning a kernel after manually
specifying the hypothesis. Specifically, in the AMD test, our testing procedure incorporates two
phases. In Phase I, we estimate the AMD over the deep kernel space and infer the potential hypothesis.
In Phase II, we assess the statistical significance of the potential hypothesis, where we propose a
unified testing framework to derive thresholds for tests over different possible hypotheses from
Phase I. We provided theoretical guarantees for the proposed method and validated its effectiveness
through extensive experiments on benchmark datasets and practical applications. Looking ahead, an
interesting direction for future work is to extend relative similarity testing from three distributions to
the more general case of multiple distributions.

7 Limitation Statement

By learning a proper hypothesis and a kernel simultaneously, the AMD test could lead to overfitting,
especially with limited samples. To mitigate this, we introduce augmented data in the optimization.
As shown in Figure 2, the learned hypothesis reliably captures the true relative similarity even with
small sample sizes (20 for CIFAR10 and 50 for MNIST). Although using augmented data increases
time complexity, the experiments (Figures 4 and 5) show that only a small number of samples are
needed for convergence, i.e., the test power achieves 1. In Table 13 (Appendix D), we further compare
the runtime of the AMD test with all baselines and provide a detailed analysis.

In the theoretical analysis, we impose several assumptions, including the covering number assumption
for Theorem 3 (Assumption 1 in Appendix A.2) and the bounded-kernel assumption for Lemma 4
and Theorem 5. These assumptions are standard and follow previous approaches [37, 13]. Although
the optimization analysis in Theorem 3 reveals a gap between theoretical guarantees and practical
implementation due to the inherent randomness of optimization algorithms with unknown underlying
distributions, the core theoretical properties that ensure the validity of AMD in hypothesis testing
do not depend on this theorem and remain robust to the outcomes of the optimization. As shown in
Lemma 4, whichever deep kernel is chosen (bounded as in Eqn. (4)), type-I error is guaranteed to be
controlled. Theorem 5 shows that AMD achieves higher test power whenever the learned hypothesis
is better than random guessing, i.e., when β > 0.5, where the asymptotic distribution of the test
samples used in the analysis is independent of the optimization on training samples [21].
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Appendix
A Detailed Proofs for Our Theoretical Results

A.1 Detailed Proofs of Theorem 2

Proof. By the definition, it is evident that d(U,P,Q;FK) ≥ 0. Furthermore, since κ ∈ K is
characteristic, the mappings

U→ µU = Ez∼U[κ(·, z)], P→ µP = Ex∼P[κ(·,x)], and Q→ µQ = Ez∼Q[κ(·,y)]

are injective. Then, for any kernel κ∗ chosen from the maximal class of kernels associated with
d(U,P,Q;FK), it can be shown that

d(U,P,Q;FK) =

∣∣∣∣∣
〈
µU −

µP + µQ

2
,µP − µQ

〉
Hκ∗

∣∣∣∣∣
=

∣∣∣∣∣
〈
µU −

µQ + µP

2
,µQ − µP

〉
Hκ∗

∣∣∣∣∣
= d(U,Q,P;FK) .

Next, we prove that

d(U,P,Q;FK) ≤ d(U,P,W;FK) + d(U,Q,W;FK) .

In a similar manner, denote by κ′∗ the optimal kernel chosen from the maximal class of kernels
associated with d(U,P,W;FK) and let κ′′∗ denote the optimal kernel chosen from the maximal class
of kernels associated with d(U,Q,W;FK). The above inequality can be formalized as∣∣∣∣∣

〈
µU −

µP + µQ

2
,µP − µQ

〉
Hκ∗

∣∣∣∣∣
≤

∣∣∣∣∣
〈
µU −

µP + µW

2
,µP − µW

〉
Hκ′∗

∣∣∣∣∣+
∣∣∣∣∣
〈
µU −

µQ + µW

2
,µQ − µW

〉
Hκ′′∗

∣∣∣∣∣ .
By using kernel κ∗, it is easy to see that∣∣∣∣∣

〈
µU −

µP + µW

2
,µP − µW

〉
Hκ∗

∣∣∣∣∣ ≤
∣∣∣∣∣
〈
µU −

µP + µW

2
,µP − µW

〉
Hκ′∗

∣∣∣∣∣ ,
and ∣∣∣∣∣

〈
µU −

µQ + µW

2
,µP − µW

〉
Hκ∗

∣∣∣∣∣ ≤
∣∣∣∣∣
〈
µU −

µQ + µW

2
,µQ − µW

〉
Hκ′′∗

∣∣∣∣∣ .
Hence, it is sufficient to prove that∣∣∣∣∣

〈
µU −

µP + µQ

2
,µP − µQ

〉
Hκ∗

∣∣∣∣∣
≤

∣∣∣∣∣
〈
µU −

µP + µW

2
,µP − µW

〉
Hκ∗

∣∣∣∣∣+
∣∣∣∣∣
〈
µU −

µQ + µW

2
,µQ − µW

〉
Hκ∗

∣∣∣∣∣ .
15



To facilitate further analysis, we reformulate the AMD as follows:∣∣∣∣∣
〈
µU −

µP + µQ

2
,µP − µQ

〉
Hκ∗

∣∣∣∣∣
=

∣∣∣∣∣⟨µU,µP⟩Hκ∗ − ⟨µU,µQ⟩Hκ∗ −
∥µP∥2Hκ∗

2
+
∥µQ∥2Hκ∗

2

∣∣∣∣∣
=

∣∣∣∣∣∥µU∥2Hκ∗

2
− ⟨µU,µQ⟩Hκ∗ +

∥µQ∥2Hκ∗

2
−
∥µU∥2Hκ∗

2
+ ⟨µU,µP⟩Hκ∗ −

∥µP∥2Hκ∗

2

∣∣∣∣∣
=

∣∣∣∣∣ ||µU − µQ||2Hκ∗

2
−
||µU − µP||2Hκ∗

2

∣∣∣∣∣ .
In a similar manner, we have∣∣∣∣∣

〈
µU −

µP + µW

2
,µP − µW

〉
Hκ∗

∣∣∣∣∣ =
∣∣∣∣∣ ||µU − µW||2Hκ∗

2
−
||µU − µP||2Hκ∗

2

∣∣∣∣∣ ,
and ∣∣∣∣∣

〈
µU −

µQ + µW

2
,µQ − µW

〉
Hκ∗

∣∣∣∣∣ =
∣∣∣∣∣ ||µU − µW||2Hκ∗

2
−
||µU − µQ||2Hκ∗

2

∣∣∣∣∣ .
Here, without loss of generality, we assume ||µU − µW||2Hκ∗ ≤ ||µU − µP||2Hκ∗ ≤ ||µU − µQ||2Hκ∗ .
Then, we have∣∣∣∣∣

〈
µU −

µP + µQ

2
,µP − µQ

〉
Hκ∗

∣∣∣∣∣ = ||µU − µQ||2Hκ∗

2
−
||µU − µP||2Hκ∗

2

and ∣∣∣∣∣
〈
µU −

µP + µW

2
,µP − µW

〉
Hκ∗

∣∣∣∣∣+
∣∣∣∣∣
〈
µU −

µQ + µW

2
,µQ − µW

〉
Hκ∗

∣∣∣∣∣
=
||µU − µQ||2Hκ∗

2
+
||µU − µP||2Hκ∗

2
− 2
||µU − µW||2Hκ∗

2

≥
||µU − µQ||2Hκ∗

2
−
||µU − µW||2Hκ∗

2

≥
||µU − µQ||2Hκ∗

2
−
||µU − µP||2Hκ∗

2
≥ d(U,P,Q;FK) .

For other cases where the order of the terms differs, a similar analysis applies, leading to analogous
conclusions. This completes the proof.

A.2 Detailed Proofs of Theorem 3

We start by introducing the concept of the U -statistic, a fundamental tool in statistics.

Definition 6. [37, 27] Let h((w1,w2, . . . ,wr;κ) be a symmetric function of r arguments. Suppose
we have a random sample w1,w2, . . . ,wm from distribution W. The r-th order U -statistic is defined
as follows

Um(h) =

(
m

r

)−1 ∑
1≤i1<i2<···<ir≤m

h(wi1 ,wi2 , ...,wir ) .

Here,
(
m
r

)
is the number of ways to choose r distinct indices from m, i.e., the binomial coefficient,

and the summation is taken over all possible r-tuples from the sample.
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Let H be a function space of h(·) for U -statistic and denote by pseudometric em : H ×H → R≥0

as follows
em(h1, h2) = Um (|h1 − h2|) for h1, h2 ∈H . (10)

We define the ε-covering number of (H , em) as follows

N(ε,H , em) = min

{
n : ∃h1, h2, ..., hn ∈H s.t. sup

h∈H
min
i≤n

em(h, hi) ≤ ε

}
.

For U -statistic Um(h), we define its mean value over W with a fixed function h as E[Um(h)], and
we introduce the following theorem.
Theorem 7. [37, Corollary 3.2] If H is a measurable class, then the conditions E[Um(h)] <∞
and logN(ε,H , em)/m→ 0 in probability imply ∥Um(h)− E[Um(h)]∥H

a.s.→ 0, i.e.,

lim
m→∞

sup
h∈H

|Um(h)− E[Um(h)]| = 0 ,

where a.s.→ indicates convergence almost surely.

Recall the definition of d̂κ(Z,X, Y ) from Eqn. (2) with corresponding samples Z = {zi}mi=1 ∼ Um,
X = {xi}mi=1 ∼ Pm and Y = {yi}mi=1 ∼ Qm; it can be equivalently expressed as a second-order
U -statistic with wi = (zi,xi,yi) and wj = (zj ,xj ,yj) as defined in Definition 6, and is given by

d̂κ(Z,X, Y ) =
1

2m(m− 1)

∑
i̸=j

h((zi,xi,yi), (zj ,xj ,yj);κ) ,

where we define the function

h((zi,xi,yi), (zj ,xj ,yj);κ)

= κ(zi,xj) + κ(zj ,xi)− κ(zi,yj)− κ(zj ,yi)− κ(xi,xj) + κ(yi,yj) , (11)

which is symmetric if the kernel κ is symmetric.

Given the kernel space K consisting of bounded kernels, we denote by H the class of functions
h(·;κ) induced by bounded kernel κ ∈ K, as defined in Eqn. (11). Meanwhile, the corresponding
pseudometric defined in Eqn. (10) can be written as

em (h(·;κ1), h(·;κ2))

=
1

2m(m− 1)

∑
i̸=j

|h((zi,xi,yi), (zj ,xj ,yj);κ1)− h((zi,xi,yi), (zj ,xj ,yj);κ2)| ,

for h(·;κ1), h(·;κ2) ∈H .

Building on this, we propose the following assumption.

Assumption 1. H is measurable and satisfies the condition logN(ε,H , em)/m
p−→ 0.

Under the assumption, the Theorem 7 can be applied to d̂κ(Z,X, Y ) such that

lim
m→∞

sup
h(·;κ)∈H

∣∣∣d̂κ(Z,X, Y )− dκ(U,P,Q)
∣∣∣ = 0 , (12)

where dκ(U,P,Q) = E
[
d̂κ(Z,X, Y )

]
We now present the proofs of Theorem 3 under the Assumption 1 and the condition in Eqn.(12).

Proof. Recall that the kernel is selected as follows:

κ∗
m ∈ argmax

κ∈{κ∗,+
m ,κ∗,−

m }

∣∣∣d̂κ(Z,X, Y )
∣∣∣ .

Here, with a regularization parameter 0 ≤ λ <∞, the kernel κ∗,+
m is determined by:

κ∗,+
m ∈ argmax

κ∈K
d̂κ(Z,X, Y )− λ · d̂κ(Zaug, Xaug, Y aug)2.
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Similarly, the kernel κ∗,−
m is obtained as:

κ∗,−
m ∈ argmin

κ∈K
d̂κ(Z,X, Y ) + λ · d̂κ(Zaug, Xaug, Y aug)2.

Furthermore, the relative similarity relationship F associated with the selected kernel is defined as
follows

F =

{
1 for κ∗

m = κ∗,+
m

−1 for κ∗
m = κ∗,−

m .

The above terms κ∗
m, κ∗,+

m , κ∗,−
m and F are all empirical estimations derived from the samples Z, X ,

and Y . To facilitate the proof, we need to define their counterparts under the true distributions U, P,
and Q. We start by recalling the definition of AMD in Eqn.(1) as follows:

d(U,P,Q;FK) = sup
κ∈K

∣∣∣∣∣
〈
µU −

µP + µQ

2
,µP − µQ

〉
Hκ

∣∣∣∣∣
= sup

κ∈K
|dκ(U,P,Q)|

= sup
κ∈{κ∗,+,κ∗,−}

|dκ(U,P,Q)| .

In a similar manner, we define

κ∗ = argmax
κ∈{κ∗,+,κ∗,−}

|dκ(U,P,Q)| ,

where

κ∗,+ ∈ argmax
κ∈K

dκ(U,P,Q) and κ∗,− ∈ argmin
κ∈K

dκ(U,P,Q) .

Hence, we can write that

d(U,P,Q;FK) = F ∗ · dκ
∗
(U,P,Q) ,

where

F ∗ =

{
1 for κ∗ = κ∗,+

−1 for κ∗ = κ∗,−.

Building on this, to establish the convergence

F · d̂κ
∗
m(Z,X, Y )− d(U,P,Q;FK)

a.s.−−→ 0 ,

it is equivalent to show that

F · d̂κ
∗
m(Z,X, Y )− F ∗ · dκ

∗
(U,P,Q)

a.s.−−→ 0 ,

which can be simplified as follows

max
{
1 · d̂κ

∗,+
m (Z,X, Y ),−1 · d̂κ

∗,−
m (Z,X, Y )

}
− max

{
1 · dκ

∗,+
(U,P,Q),−1 · dκ

∗,−
(U,P,Q)

}
a.s.−−→ 0 .

Here, using the Continuous Mapping Theorem [38] and the continuity of max function, it suffices to
prove that

dκ
∗,+
m (Z,X, Y )− dκ

∗,+
(U,P,Q)

a.s.−−→ 0 and dκ
∗,−
m (Z,X, Y )− dκ

∗,−
(U,P,Q)

a.s.−−→ 0 .

Building on this, we first prove that, as m→∞, the following convergence holds:

d̂κ
∗,+
m (Z,X, Y )− dκ

∗,+
(U,P,Q)

a.s.−−→ 0 .

Based on the Borel-Cantelli Lemma [39, 40], it is sufficient to prove that∑
m≥0

Pr
(∣∣∣d̂κ∗,+

m (Z,X, Y )− dκ
∗,+

(U,P,Q)
∣∣∣ ≥ δ

)
<∞ , (13)
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for any δ > 0.

It is evident that∣∣∣d̂κ∗,+
m (Z,X, Y )− dκ

∗,+
(U,P,Q)

∣∣∣
≤

∣∣∣d̂κ∗,+
m (Z,X, Y )− dκ

∗,+
m (U,P,Q)

∣∣∣+ ∣∣∣dκ∗,+
m (U,P,Q)− dκ

∗,+
(U,P,Q)

∣∣∣
= A+B .

and we have that

Pr
(∣∣∣d̂κ∗,+

m (Z,X, Y )− dκ
∗,+

(U,P,Q)
∣∣∣ ≥ δ

)
≤ Pr (A ≥ δ/4) + Pr (B ≥ 3δ/4) . (14)

Based on Eqn. (12), we have that, there exists a large enough sample size m1 such that

A =
∣∣∣d̂κ∗,+

m1 (Z,X, Y )− dκ
∗,+
m1 (U,P,Q)

∣∣∣ < δ

4
. (15)

which indicates that
Pr (A ≥ δ/4) = 0 , (16)

for a large enough sample size m1.

Notably, by the definition of κ∗,+, it is evident that dκ
∗,+

(U,P,Q) ≥ dκ
∗,+
m (U,P,Q) and we have

B =
∣∣∣dκ∗,+

m (U,P,Q)− dκ
∗,+

(U,P,Q)
∣∣∣ = dκ

∗,+
(U,P,Q)− dκ

∗,+
m (U,P,Q) .

Based on Eqn. (12), we have that, there exists a large enough sample size m2 such that

dκ
∗,+

(U,P,Q) < d̂κ
∗,+

(Z,X, Y ) +
δ

4
. (17)

Based on the definition of κ∗,+
m , we have

d̂κ
∗,+
m (Z,X, Y )− λ · d̂κ

∗,+
m (Zaug, Xaug, Y aug)2 ≥ d̂κ

∗,+
(Z,X, Y )− λ · d̂κ

∗,+
(Zaug, Xaug, Y aug)2 .

Hence, substituting this relationship into Eqn. (17), we can refine the bound as follows

dκ
∗,+

(U,P,Q)

< d̂κ
∗,+
m2 (Z,X, Y )− λ · d̂κ

∗,+
m2 (Zaug, Xaug, Y aug)2 + λ · d̂κ

∗,+
(Zaug, Xaug, Y aug)2 +

δ

4

< d̂κ
∗,+
m2 (Z,X, Y ) + λ · d̂κ

∗,+
(Zaug, Xaug, Y aug)2 +

δ

4
, (18)

for a large enough sample size m2.

Meanwhile, for a large enough sample size m3 and a constant λ > 0, the regularization term satisfies
the following bound

λ · d̂κ
∗,+

(Zaug, Xaug, Y aug)2 <
δ

4
, (19)

derived from Eqn. (12) and the fact that E[d̂κ(Zaug, Xaug, Y aug)] = 0 for κ ∈ K based on Eqn. (5).

Then, combining the results of Eqns. (15), (18) and (19), the following holds

dκ
∗,+

(U,P,Q) < dκ
∗,+
m4 (U,P,Q) +

δ

4
+

δ

4
+

δ

4

= dκ
∗,+
m4 (U,P,Q) + 3δ/4 ,

for a large sample size m4 = max{m1,m2,m3}.
This indicates that

Pr (B ≥ 3δ/4) = 0 , (20)
for a large enough sample size m4.
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Consequently, based on Eqns. (14), (16) and (20), we have that

Pr
(∣∣∣d̂κ∗,+

m (Z,X, Y )− dκ
∗,+

(U,P,Q)
∣∣∣ ≥ δ

)
= 0 ,

for a large enough sample size m4, which implies that∑
m≥0

Pr
(∣∣∣d̂κ∗,+

m (Z,X, Y )− dκ
∗,+

(U,P,Q)
∣∣∣ ≥ δ

)
< m4 <∞ .

Hence, we complete the proof of

d̂κ
∗,+
m (Z,X, Y )− dκ

∗,+
(U,P,Q)

a.s.−−→ 0 .

In a similar manner, we now prove that, as m→∞, the following convergence holds:

d̂κ
∗,−
m (Z,X, Y )− dκ

∗,−
(U,P,Q)

a.s.−−→ 0 .

Here, it is also sufficient to demonstrate that∑
m≥0

Pr
(∣∣∣d̂κ∗,−

m (Z,X, Y )− dκ
∗,−

(U,P,Q)
∣∣∣ ≥ δ

)
<∞ , (21)

for all δ > 0.

It is evident that∣∣∣d̂κ∗,−
m (Z,X, Y )− dκ

∗,−
(U,P,Q)

∣∣∣
≤

∣∣∣d̂κ∗,−
m (Z,X, Y )− dκ

∗,−
m (U,P,Q)

∣∣∣+ ∣∣∣dκ∗,−
m (U,P,Q)− dκ

∗,−
(U,P,Q)

∣∣∣
= C +D .

and we have that

Pr
(∣∣∣d̂κ∗,−

m (Z,X, Y )− dκ
∗,−

(U,P,Q)
∣∣∣ ≥ δ

)
≤ Pr (C ≥ δ/4) + Pr (D ≥ 3δ/4) . (22)

Based on Eqn. (12), we have that, there exists a large enough sample size m5 such that

C =
∣∣∣d̂κ∗,−

m5 (Z,X, Y )− dκ
∗,−
m5 (U,P,Q)

∣∣∣ < δ

4
. (23)

which indicates that
Pr (C ≥ δ/4) = 0 , (24)

for a large enough sample size m5.

Notably, by the definition of κ∗,−, it is evident that dκ
∗,−

(U,P,Q) ≤ dκ
∗,−
m (U,P,Q) and we have

B =
∣∣∣dκ∗,−

m (U,P,Q)− dκ
∗,−

(U,P,Q)
∣∣∣ = dκ

∗,−
m (U,P,Q)− dκ

∗,−
(U,P,Q) .

Based on the definition of κ∗,−
m , we have

d̂κ
∗,−
m (Z,X, Y )− λ · d̂κ

∗,−
m (Zaug, Xaug, Y aug)2 ≤ d̂κ

∗,−
(Z,X, Y )− λ · d̂κ

∗,−
(Zaug, Xaug, Y aug)2 .

Hence, substituting this relationship into Eqn. (23), we can refine the bound as follows

dκ
∗,−
m5 (U,P,Q)

< d̂κ
∗,−

(Z,X, Y )− λ · d̂κ
∗,−

(Zaug, Xaug, Y aug)2 + λ · d̂κ
∗,−
m5 (Zaug, Xaug, Y aug)2 +

δ

4

< d̂κ
∗,−

(Z,X, Y ) + λ · d̂κ
∗,−
m5 (Zaug, Xaug, Y aug)2 +

δ

4
, (25)

for a large enough sample size m5.
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Based on Eqn. (12), we have that, there exists a large enough sample size m6 such that

dκ
∗,−

(U,P,Q) < d̂κ
∗,−

(Z,X, Y ) +
δ

4
. (26)

Meanwhile, for a large enough sample size m7 and a constant λ > 0, the regularization term satisfies
the following bound

λ · d̂κ
∗,−
m7 (Zaug, Xaug, Y aug)2 <

δ

4
, (27)

derived from Eqn. (12) and the fact that E[d̂κ(Zaug, Xaug, Y aug)] = 0 for κ ∈ K based on Eqn. (5).

Then, combining the results of Eqns. (23), (25) and (27), the following holds

dκ
∗,−

(U,P,Q) < dκ
∗,−
m8 (U,P,Q) +

δ

4
+

δ

4
+

δ

4

= dκ
∗,−
m8 (U,P,Q) + 3δ/4 ,

for a large sample size m8 = max{m5,m6,m7}.
This indicates that

Pr (D ≥ 3δ/4) = 0 , (28)
for a large enough sample size m8.

Consequently, based on Eqns. (22), (24) and (28), we have that

Pr
(∣∣∣d̂κ∗,−

m (Z,X, Y )− dκ
∗,−

(U,P,Q)
∣∣∣ ≥ δ

)
= 0 ,

for a large enough sample size m8, which implies that∑
m≥0

Pr
(∣∣∣d̂κ∗,−

m (Z,X, Y )− dκ
∗,−

(U,P,Q)
∣∣∣ ≥ δ

)
< m8 <∞ .

Hence, we complete the proof of

d̂κ
∗,−
m (Z,X, Y )− dκ

∗,−
(U,P,Q)

a.s.−−→ 0 .

This completes the proof of Theorem 3.

A.3 Detailed Proofs of Lemma 4

Recall that we test on the unified hypotheses as follows

Huni
0 : F · dκ

∗
m(U,P,Q) ≤ 0 and Huni

1 : F · dκ
∗
m(U,P,Q) > 0 .

We determine the testing threshold F · τα as the (1 − α)-quantile of the estimated distribution of
F · d̂κ∗

m(Z ′, X ′, Y ′) under the proxy null hypothesis Hp
0 : F · dκ∗

m(U,P,Q) = 0 (i.e., the least-
favorable boundary of the composite null hypothesis) by wild bootstrap. Specifically, let B be the
number of bootstraps. In the b-th iteration (b ∈ [B]), we draw i.i.d. variables ξ = (ξ1, ..., ξm) from
Exponential distribution with scale parameter 1 and define

ζ = {ζi}mi=1 with ζi = m · ξi/
m∑
j

ξj .

Then, we calculate the b-th wild bootstrap statistic for d̂κ
∗
m(Z ′, X ′, Y ′) as follows

Tb =
∑
i̸=j

(ζiζj − 1)×
κ(z′

i,x
′
j) + κ(z′

j ,xi)− κ(z′
i,y

′
j)− κ(z′

j ,yi)− κ(x′
i,xj) + κ(y′

i,y
′
j)

2m(m− 1)
.

During such process, we obtain B statistics T1, T2, ..., TB and introduce testing threshold F · τα with

τα = argmin
τ

{
B∑

b=1

I[F · Tb ≤ F · τ ]
B

≥ 1− α

}
.
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Given the testing threshold F · τα > 0, the testing procedures can be formalized as

h(Z ′, X ′, Y ′;κ∗
m) = I[F · d̂κ

∗
m(Z ′, X ′, Y ′) > F · τα] ,

where h(Z ′, X ′, Y ′;κ∗
m) = 1 indicates that the inferred relative similarity relationship presented by

F is statistically significant at level α; otherwise, the relationship is not statistically significant.

Building on this, we introduce a useful Theorem as follows.
Theorem 8. [41, Theorem 1] If h is non-degenerate and h2(w,w′;κ) < ∞ with w = (z,x,y),
w′ = (z′,x′,y′) and w,w′ ∼ U× P×Q, then as m→∞, the following holds

sup
t∈R

∣∣∣Pr (√mF · Tb ≤ t
)
− Pr

(√
m
(
F · d̂κ

∗
m (Z ′, X ′, Y ′)− F · dκ

∗
m (U,P,Q)

)
≤ t
)∣∣∣→ 0 .

We now present the proofs of Lemma 4 as follows.

Proof. By applying the results of Theorem 8 and substituting t/
√
m with F · τα, we obtain the

following asymptotic behavior as m→∞:∣∣∣Pr (F · Tb ≤ F · τα)− Pr
(
F · d̂κ

∗
m (Z ′, X ′, Y ′)− F · dκ

∗
m (U,P,Q) ≤ F · τα

)∣∣∣→ 0 . (29)

By the definition of τα, the following holds,

Pr (F · Tb ≤ F · τα) ≥ 1− α . (30)

Then, by applying Eqns. (29) and (30), the following holds asymptotically

Pr
(
F · d̂κ

∗
m (Z ′, X ′, Y ′)− F · dκ

∗
m (U,P,Q) ≤ F · τα

)
≥ 1− α ,

which can be expressed as

Pr
(
F · d̂κ

∗
m (Z ′, X ′, Y ′) ≤ F · τα + F · dκ

∗
m (U,P,Q)

)
≥ 1− α .

Under the composite null hypothesis Huni
0 : F ·dκ∗

m(U,P,Q) ≤ 0, the ground truth F ·dκ∗
m(U,P,Q)

is unknown, but we have that

Pr
(
F · d̂κ

∗
m (Z ′, X ′, Y ′) ≤ F · τα + F · dκ

∗
m (U,P,Q)

)
≥ Pr

(
F · d̂κ

∗
m (Z ′, X ′, Y ′) ≤ F · τα

)
.

Hence, by considering the proxy null hypothesis Hp
0 : F · dκ∗

m(U,P,Q) = 0, it follows that

Pr
(
h(Z ′, X ′, Y ′;κ∗

m) = I[F · d̂κ
∗
m(Z ′, X ′, Y ′) > F · τα] = 1

)
= Pr

(
F · d̂κ

∗
m (Z ′, X ′, Y ′) > F · τα

)
≤ 1− Pr

(
F · d̂κ

∗
m (Z ′, X ′, Y ′) ≤ F · τα

)
≤ 1− (1− α)

≤ α.

This completes the proof.

A.4 Detailed Proofs of Theorem 5

In the proof of this theorem, we analyze a practical scenario where a relative similarity relationship
is known to exist, i.e., |dκ∗

m(U,P,Q)| > 0. However, the exact sign of this relationship is not
known. In such cases, if we arbitrarily assume a particular direction of the relationship, for example,
dκ

∗
m(U,P,Q) > 0, the likelihood of this assumption being correct is 0.5.

Furthermore, in our AMD test, we denote the probability that F from Phase 1 captures the true
relative similarity relationship as follows

β = Pr[F · dκ
∗
m(U,P,Q) > 0] .
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Recall that, to test relative similarity, we introduce the test statistic d̂κ
∗
m(Z ′, X ′, Y ′) (Eqn. (2)), which

is an unbiased estimator of dκ
∗
m(U,P,Q) and can be expressed as a U -statistic as follows:

d̂κ
∗
m(Z ′, X ′, Y ′) =

1

2m(m− 1)

∑
i̸=j

h((z′
i,x

′
i,y

′
i), (z

′
j ,x

′
j ,y

′
j);κ

∗
m) ,

where we define the function

h((z′
i,x

′
i,y

′
i), (z

′
j ,x

′
j ,y

′
j);κ

∗
m)

= κ∗
m(z′

i,x
′
j) + κ∗

m(z′
j ,x

′
i)− κ∗

m(z′
i,y

′
j)− κ∗

m(z′
j ,y

′
i)− κ∗

m(x′
i,x

′
j) + κ∗

m(y′
i,y

′
j) ,

which is symmetric if the kernel κ∗
m is symmetric.

The estimator has the following asymptotic behavior:
Corollary 9. [27, Section 5] If h is non-degenerate and h2(w,w′;κ) < ∞ with w = (z,x,y),
w′ = (z′,x′,y′) and w,w′ ∼ U× P×Q, the following holds

√
m
(
d̂κ

∗
m(Z ′, X ′, Y ′)− dκ

∗
m(U,P,Q)

)
d→ N (0, σ2

U,P,Q),

σ2
U,P,Q = 4

(
Ew

[
Ew′ [h2(w,w′;κ∗

m)]
]
− E2

w,w′ [h(w,w′;κ∗
m)]
)
,

where d→ denotes convergence in distribution.

We now present the proofs of Theorem 5 as follows.

Proof. In our AMD testing procedure, as outlined in Eqn. (8), F ·τα is defined as the (1−α)-quantile
of the null distribution of F · d̂κ∗

m(Z ′, X ′, Y ′). This null distribution is estimated using the wild
bootstrap under the proxy null hypothesis Hp

0 : F · dκ∗
m(U,P,Q) = 0.

As discussed above, in our AMD test, β denotes the probability that F from Phase 1 captures the true
relative similarity relationship. Conditional on this event and based on Corollary 9, the test power of
our method is given by:

Pr
(
F · d̂κ

∗
m(Z ′, X ′, Y ′) > F · τα ∩ F · dκ

∗
m(U,P,Q) > 0

)
= βΦ

(√
m
|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
.

Conversely, under the condition that F incorrectly captures the relative similarity relationship, the
test power is given by:

Pr
(
F · d̂κ

∗
m(Z ′, X ′, Y ′) > F · τα ∩ F · dκ

∗
m(U,P,Q) < 0

)
= (1− β)Φ

(√
m
−|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
.

In summary, we have the test power for our AMD test as follows

p = Pr
(
F · d̂κ

∗
m(Z ′, X ′, Y ′) > F · τα

)
= βΦ

(√
m
|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
+ (1− β)Φ

(√
m
−|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
.

For methods that manually specify an interested relative similarity relationship in alternative hypothe-
sis (e.g., dκ

∗
m(U,P,Q) > 0), it tests on

H ′
0 : dκ

∗
m(U,P,Q) ≤ 0 and H ′

1 : dκ
∗
m(U,P,Q) > 0 ,

and the likelihood of this alternative hypothesis being correct is 0.5.

To test the composite null hypothesis H ′
0 : dκ

∗
m(U,P,Q) ≤ 0, we can set the testing threshold

τ ′α > 0 as the (1−α)-quantile of the asymptotic distribution of d̂κ
∗
m(Z ′, X ′, Y ′) under the condition
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dκ
∗
m(U,P,Q) = 0 (i.e., the least-favorable boundary of the composite null hypothesis). Actually,

this testing threshold can be replace by F · τα in practice. From Theorem 8, the testing threshold
F · τα converges to the true (1 − α)-quantile of the asymptotic distribution of d̂κ

∗
m(Z ′, X ′, Y ′)

under the proxy null hypothesis Hp
0 : F · dκ∗

m(U,P,Q) = 0, which is symmetric at 0 according
to Corollary 9 and matches the asymptotic distribution of d̂κ

∗
m(Z ′, X ′, Y ′) under the condition

dκ
∗
m(U,P,Q) = 0. Hence, F · τα is also a consistent estimator of the (1 − α)-quantile of the

distribution of d̂κ
∗
m(Z ′, X ′, Y ′) under the condition dκ

∗
m(U,P,Q) = 0.

Given the testing threshold F ·τα and conditional on the event that the specified alternative hypothesis
H1 : dκ

∗
m(U,P,Q) > 0 is correct, the test power is given by:

0.5Φ

(√
m
|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
,

from Corollary 9.

Conversely, under the condition that the specified alternative hypothesis H1 : dκ
∗
m(U,P,Q) > 0 is

false, the test power is given by:

0.5Φ

(√
m
−|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
.

Hence, the test power of randomly specifying an alternative hypothesis is expressed as follows:

p′ = Pr
(
d̂κ

∗
m(Z ′, X ′, Y ′) ≥ F · τα

)
= 0.5Φ

(√
m
|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
+ 0.5Φ

(√
m
−|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
.

Finally, as we can see, the difference in test power between adjusting alternative hypothesis with F
versus using a randomly selected alternative hypothesis is given by

p− p′ = (β − 0.5)Φ

(√
m
|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
+ (0.5− β)Φ

(√
m
−|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
= (β − 0.5)Φ

(√
m
|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
+O(e−m) ,

where τα > 0. This completes the proof.

A.5 Detailed Proofs of Theorem 10

In our AMD test, we denote the probability that F from Phase 1 captures the true relative similarity
relationship as follows

β = Pr[F · dκ
∗
m(U,P,Q) > 0] .

Recall that, to test relative similarity, we introduce the test statistic d̂κ
∗
m(Z ′, X ′, Y ′) (Eqn. (2)), which

is an unbiased estimator of dκ
∗
m(U,P,Q) and can be expressed as a U -statistic as follows:

d̂κ
∗
m(Z ′, X ′, Y ′) =

1

2m(m− 1)

∑
i̸=j

h((z′
i,x

′
i,y

′
i), (z

′
j ,x

′
j ,y

′
j);κ

∗
m) ,

where we define the function

h((z′
i,x

′
i,y

′
i), (z

′
j ,x

′
j ,y

′
j);κ

∗
m)

= κ∗
m(z′

i,x
′
j) + κ∗

m(z′
j ,x

′
i)− κ∗

m(z′
i,y

′
j)− κ∗

m(z′
j ,y

′
i)− κ∗

m(x′
i,x

′
j) + κ∗

m(y′
i,y

′
j) ,

which is symmetric if the kernel κ∗
m is symmetric.

The estimator has the following asymptotic behavior:
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Corollary 9′. [27, Section 5.5.1] If h is non-degenerate and h2(w,w′;κ) <∞ with w = (z,x,y),
w′ = (z′,x′,y′) and w,w′ ∼ U× P×Q, the following holds

√
m
(
d̂κ

∗
m(Z ′, X ′, Y ′)− dκ

∗
m(U,P,Q)

)
d→ N (0, σ2

U,P,Q),

σ2
U,P,Q = 4

(
Ew

[
Ew′ [h2(w,w′;κ∗

m)]
]
− E2

w,w′ [h(w,w′;κ∗
m)]
)
,

where d→ denotes convergence in distribution.

We now present the proofs of Theorem 10 as follows.

Proof. In our AMD testing procedure, as outlined in Eqn. (8), F ·τα is defined as the (1−α)-quantile
of the null distribution of F · d̂κ∗

m(Z ′, X ′, Y ′). This null distribution is estimated using the wild
bootstrap under the proxy null hypothesis Hp

0 : F · dκ∗
m(U,P,Q) = 0.

As discussed above, in our AMD test, β denotes the probability that F from Phase 1 captures the true
relative similarity relationship. Conditional on this event and based on Corollary 9, the test power of
our method is given by:

Pr
(
F · d̂κ

∗
m(Z ′, X ′, Y ′) > F · τα ∩ F · dκ

∗
m(U,P,Q) > 0

)
= βΦ

(√
m
|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
.

Conversely, under the condition that F incorrectly captures the relative similarity relationship, the
test power is given by:

Pr
(
F · d̂κ

∗
m(Z ′, X ′, Y ′) > F · τα ∩ F · dκ

∗
m(U,P,Q) < 0

)
= (1− β)Φ

(√
m
−|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
.

In summary, we have the test power for our AMD test as follows

p = Pr
(
F · d̂κ

∗
m(Z ′, X ′, Y ′) > F · τα

)
= βΦ

(√
m
|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
+ (1− β)Φ

(√
m
−|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
.

For methods that test both possible alternative hypotheses in a multiple testing manner with a reduced
significance level of α/2 for each, we first test on the following hypotheses

H ′
0 : dκ

∗
m(U,P,Q) ≤ 0 and H ′

1 : dκ
∗
m(U,P,Q) > 0 .

The testing threshold τ ′α/2 > 0 is determined as the (1 − α/2)-quantile of the null distribution

of d̂κ
∗
m(Z ′, X ′, Y ′) under the condition that dκ

∗
m(U,P,Q) = 0 (i.e., the least-favorable boundary

of the composite null hypothesis). Given the testing threshold, we reject the null hypothesis if
d̂κ

∗
m(Z ′, X ′, Y ′) > τ ′α/2.

Second, we also test on the following hypotheses with significance level α/2,

H ′′
0 : dκ

∗
m(U,P,Q) ≥ 0 and H ′′

1 : dκ
∗
m(U,P,Q) < 0 .

The testing threshold τ ′′α/2 < 0 is determined as the α/2-quantile of the null distribution of

d̂κ
∗
m(Z ′, X ′, Y ′) under the condition that dκ

∗
m(U,P,Q) = 0 (i.e., the least-favorable boundary

of the composite null hypothesis). Given the testing threshold, we reject the null hypothesis if
d̂κ

∗
m(Z ′, X ′, Y ′) < τ ′′α/2.

Notably, in both cases, the testing thresholds actually has the same absolute value, i.e., τ ′α/2 = −τ ′′α/2.

This arises from the fact that the null distribution of d̂κ
∗
m(Z ′, X ′, Y ′) under the condition that
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dκ
∗
m(U,P,Q) = 0 is symmetric at zero according to Corollary 9. Moreover, the null distribution also

matches the asymptotic distribution of F · d̂κ∗
m(Z ′, X ′, Y ′) under the condition F ·dκ∗

m(U,P,Q) = 0
with F ∈ {−1,+1}. Consequently, the absolute value of testing thresholds, i.e., τ ′α/2 = −τ ′′α/2 used
in both tests can be estimated via the same wild bootstrap procedure as described in Section 3.3, with
F ∈ {−1,+1} and a reduced significance level of α/2, yielding the threshold F · τα/2 = τ ′α/2 =

−τ ′′α/2. The equivalence holds asymptotically, following from the convergence properties of F · τα/2
established in Theorem 8.

For the two alternative hypotheses H ′
1 : dκ

∗
m(U,P,Q) > 0 and H ′′

1 : dκ
∗
m(U,P,Q) < 0, only one

of them is true, and the corresponding test exhibits the following test power from Corollary 9

Φ

(
√
m
|d̂κ∗

m(U,P,Q)| − F · τα/2
σU,P,Q

)
.

Conversely, for the test with the incorrect alternative hypothesis, its test power is given by:

Φ

(
√
m
−|d̂κ∗

m(U,P,Q)| − F · τα/2
σU,P,Q

)
.

Hence, the test power of testing on both possible alternative hypotheses with reduce significance level
is expressed as follows

p′′ = Φ

(
√
m
|d̂κ∗

m(U,P,Q)| − F · τα/2
σU,P,Q

)
+Φ

(
√
m
−|d̂κ∗

m(U,P,Q)| − F · τα/2
σU,P,Q

)
.

Finally, as we can see, the difference in test power between adjusting alternative hypothesis with F
versus testing on both possible alternative hypotheses is given by

p− p′′

= βΦ

(
√
m
|d̂κ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
− Φ

(
√
m
|d̂κ∗

m(U,P,Q)| − F · τα/2
σU,P,Q

)

+(1− β)Φ

(
√
m
−|d̂κ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
− Φ

(
√
m
−|d̂κ∗

m(U,P,Q)| − F · τα/2
σU,P,Q

)

= βΦ

(
√
m
|d̂κ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
− Φ

(
√
m
|d̂κ∗

m(U,P,Q)| − F · τα/2
σU,P,Q

)
+O(e−m) .

where F · τα < F · τα/2. This completes the proof.

B Relevant Work

Prior to conducting hypothesis testing, it is typically necessary to formulate the null and alternative
hypotheses. Previous methods for relative similarity testing follow this procedure by manually specify-
ing a relationship in the alternative hypothesis and performing the test accordingly. One approach uses
a test statistic based on the difference of MMD distances: MMD(U,P;κ)−MMD(U,Q;κ). If this
difference exceeds a positive threshold, the test rejects the null hypothesis, essentially testing whether
Q is closer to U than P [13]. Another approach tests on a reference distribution U = (1− ν)P+ νQ,
where ν ∈ [0, 1], by evaluating whether ν > δ for some fixed threshold δ ∈ (0, 1) [14]. This setup
quantifies the relative closeness of P to the mixture distribution U at a level determined by δ, thereby
constituting an oriented test. Several subsequent methods (used as baselines in our experiments,
as shown in Figure 1, with details provided in Appendix D.1), including MMD-D [21], UME [15],
SHCE [32], and LBI [33], extend the framework of [13] by replacing MMD with various distance
metrics from the two-sample testing literature, and likewise follow an oriented testing paradigm. In
comparison, for our AMD test, we first infer the potential relative similarity relationship and then test
the inferred relationship by proposing a corresponding alternative hypothesis.

By setting U = P (or U = Q), our test can be adapted for two-sample testing, which aims to assess the
difference between two distributions P and Q. Some relevant approaches measures differences using
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classification performance [42, 32, 43–45, 33, 46, 47], and the kernel-based approaches measure the
difference between kernel embeddings of distributions [48–52].

Various techniques have been developed to select kernels for kernel-based hypothesis testing. Some of
these rely on heuristic strategies, such as the median heuristic [9, 13], self-supervised representation
learning [53], meta learning [54], or adaptively combine multiple kernels [11, 12]. Additionally,
supervised methods have been explored, where kernels are selected based on result on held-out
data [31, 3, 23]. Previous methods all selected kernels that best support the pre-specified alternative
hypothesis, which poses challenges in kernel selection for relative similarity testing, as discussed
in Section 1. In comparison, our AMD test learns a proper hypothesis and a kernel simultaneously,
instead of learning a kernel after manually specifying the alternative hypothesis.

Wild bootstraps are widely used in hypothesis testing to approximate the null distribution [55–57].
This technique involves repeatedly re-computing the statistic with randomly assigned variables
for indexes i ∈ {1, 2, ...,m}. Alternatively, one can use the (1 − α)-quantile of asymptotic null
distribution (e.g. Corollary 9) as the testing threshold [13, 23]. However, it is challenging to obtain
an accurate asymptotic distribution with limited sample sizes.

Besides relative similarity testing, other statistical hypothesis testing methods are also widely applied
in various domains of machine learning. For instance, two-sample testing could be used for out-of-
distribution detection [58], adversarial image detection [35], and distribution alignment in transfer
learning [22]. Independence testing could be used for domain generalization [59, 60], causal discovery
[61] and trustworthy machine learning [52].

C Comparison with the Test on Both Possible Alternative Hypotheses

Another way to perform the relative similarity testing is to test on both possible alternative hypotheses
in a multiple testing manner with reduced significance level for each test. Specifically, given the
significance level α, we can test on the following hypotheses with significance level α/2,

H ′
0 : dκ

∗
m(U,P,Q) ≤ 0 and H ′

1 : dκ
∗
m(U,P,Q) > 0 .

The testing threshold τ ′α/2 > 0 is determined as the (1 − α/2)-quantile of the null distribution

of d̂κ
∗
m(Z ′, X ′, Y ′) under the condition that dκ

∗
m(U,P,Q) = 0 (i.e., the least-favorable boundary

of the composite null hypothesis). Given the testing threshold, we reject the null hypothesis if
d̂κ

∗
m(Z ′, X ′, Y ′) > τ ′α/2.

Second, we also test on the following hypotheses with significance level α/2,

H ′′
0 : dκ

∗
m(U,P,Q) ≥ 0 and H ′′

1 : dκ
∗
m(U,P,Q) < 0 .

The testing threshold τ ′′α/2 < 0 is determined as the α/2-quantile of the null distribution of

d̂κ
∗
m(Z ′, X ′, Y ′) under the condition that dκ

∗
m(U,P,Q) = 0 (i.e., the least-favorable boundary

of the composite null hypothesis). Given the testing threshold, we reject the null hypothesis if
d̂κ

∗
m(Z ′, X ′, Y ′) < τ ′′α/2.

Notably, in both cases, the testing thresholds actually has the same absolute value, i.e., τ ′α/2 = −τ ′′α/2.

This arises from the fact that the null distribution of d̂κ
∗
m(Z ′, X ′, Y ′) under the condition that

dκ
∗
m(U,P,Q) = 0 is symmetric at zero according to Corollary 9. Moreover, the null distribution also

matches the asymptotic distribution of F · d̂κ∗
m(Z ′, X ′, Y ′) under the condition F ·dκ∗

m(U,P,Q) = 0
with F ∈ {−1,+1}. Consequently, the absolute value of testing thresholds, i.e., τ ′α/2 = −τ ′′α/2 used
in both tests can be estimated via the same wild bootstrap procedure as described in Section 3.3, with
F ∈ {−1,+1} and a reduced significance level of α/2, yielding the threshold F · τα/2 = τ ′α/2 =

−τ ′′α/2. The equivalence holds asymptotically, following from the convergence properties of F · τα/2
established in Theorem 8.

Now, we present the comparison of test power with the multiple testing procedure as follows:

Theorem 10. If dκ
∗
m(U,P,Q) ̸= 0, the test based on the learned alternative hypothesis with F

achieves a higher test power than that tests on both possible alternative hypotheses is given by as
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follows

βΦ

(√
m
|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
− Φ

(
√
m
|dκ∗

m(U,P,Q)| − F · τα/2
σU,P,Q

)
+O(e−m) ,

where σU,P,Q is same to that in Corollary 9 and F · τα < F · τα/2.

In Theorem 10, the term O(e−m) decays to 0 exponentially as sample size m increases, and

Φ

(√
m
|dκ∗

m(U,P,Q)| − F · τα
σU,P,Q

)
> Φ

(
√
m
|dκ∗

m(U,P,Q)| − F · τα/2
σU,P,Q

)
.

To ensure that the test based on the learned alternative hypothesis with F achieves higher test power
than testing both alternative hypotheses with a reduced significance level α/2, it is necessary to
ensure a large value of β > 0.5. Fortunately, as shown in Figure 2, the probability β can readily
converge to 1 even with limited data.

D Additional Experimental Details and Results

D.1 Details of State-of-the-Art Relative Similarity Tests

We compare our AMD test with state-of-the-art relative similarity tests, which include following
methods:

• MMD-D: Measure relative similarity using the MMD statistic with a selected deep kernel [13];
• KLFI: Measure the relative similarity using the witness function of kernel mean embeddings of

distributions, which are computed with a selected deep kernel [14].
• MMD-H: Measure relative similarity using MMD with a Gaussian kernel selected from median

heuristic [13];
• UME: Evaluate the mean embeddings of distributions over test locations and measure the relative

magnitudes of two distances calculated on these embeddings [15];
• SHCE: Train a binary classifier based on neural network and use a statistic about classification

accuracy [32];
• LBI: Train a binary classifier based on deep neural network and use a statistic about class

probabilities [33].

Several methods, including MMD-D [21], UME [15], SHCE [32], and LBI [33], are extended to
relative similarity testing by following the framework of [13], replacing MMD with various distance
metrics from the two-sample testing literature.

D.2 The Definition of Accuracy Margin

We can test the accuracy margin between source dataset S and target dataset T for a model f . Let
f(x) represent the probability assigned by the model f to the true label. We define the accuracy
margin as follows

|Ex∈S [f(x; yx)]− Ex∈T [f(x; yx)]| .

A smaller margin indicates similar model performance in the source and target dataset.

We present the accuracy margins between the original ImageNet and its variants in Table 3, with the
values computed using the pre-trained ResNet50 model.

Table 3: Accuracy margins between the original ImageNet and its variants.

ImageNetsk ImageNetr ImageNetv2 ImageNeta
Accuracy Margin 0.529 0.564 0.751 0.827
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D.3 More Experiments
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Figure 6: The comparisons between the AMD test and the baselines combined with the learned F from Phase I
of the AMD procedure (denoted by the notation (F ) to indicate that the hypotheses of previous baselines are
now formulated based on F ) are presented. We set U = νP + (1 − ν)Q with ν ∈ [0, 1]. When ν < 0.5, Q
is closer to U, whereas when ν > 0.5, P is closer to U. All methods, including baselines augmented with F ,
perform well across both regimes ν < 0.5 and ν > 0.5. This contrasts with the results shown in Figure 1, where
the performance of the baselines deteriorates for ν > 0.5, as they are originally designed to test the prespecified
alternative hypothesis H ′

1 : d(U,P) > d(U,Q). Notably, when ν = 0.5, i.e., no relative similarity relationship
exists, all methods correctly control the rejection rate (type-I error) at the nominal level α = 0.05 (indicated by
the black dashed line).

Comparisons with baselines combined with the learned F from Phase I of the AMD procedure.
We compare AMD test with baselines (Appendix D.1) combined with F (denoted by the notation
(F ) to indicate that the hypotheses of previous baselines are now formulated based on F ) as: 1)
MMD-D (F) [13, 21]; 2) KLFI (F) [14]; 3) MMD-H (F) [13]; 4) UME (F) [15]; 5) SHCE (F) [32]; 6)
LBI (F) [33]. Following the setups in Figure 1, we present the rejection rates of these methods on
CIFAR10 and MNIST with respect to different ratios ν. In Figure 6, it is evident that our AMD test
achieves higher or comparable rejection rates (i.e., test power) than others when ν < 0.5 (i.e., Q is
closer to the reference distribution U) and ν > 0.5 (i.e., P is closer to the reference distribution U).
Notably, when ν = 0.5 (i.e., no relative similarity relationship exists and P and Q are equally close
to the reference distribution U), all methods successfully control the rejection rate (type-I error) at
level α = 0.05 (indicated by the black dashed line).

Table 4: CIFAR10: Test power vs ratio ν for two AMD tests: (1) with the learned alternative hypothesis using
F (i.e., AMD), and (2) testing both possible alternative hypotheses (denoted as AMD-B). (Part 1). The bold
denotes the highest mean test power.

ν 0.0 0.1 0.2 0.3 0.4

AMD 1.00 ± .000 .983 ± .008 .804 ± .022 .543 ± .038 .197 ± .027

AMD-B 1.00 ± .000 .967 ± .012 .716 ± .022 .399 ± .037 .137 ± .022
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Table 5: CIFAR10: Test power vs ratio ν for two AMD tests: (1) with the learned alternative hypothesis using
F (i.e., AMD), and (2) testing both possible alternative hypotheses (denoted as AMD-B). (Part 2). The bold
denotes the highest mean test power.

ν 0.6 0.7 0.8 0.9 1.0

AMD .180 ± .021 .552 ± .024 .820 ± .027 .978 ± .005 1.00 ± .000

AMD-B .113 ± .013 .427 ± .029 .709 ± .033 .955 ± .014 1.00 ± .000

Table 6: MNIST: Test power vs ratio ν for two AMD tests: (1) with the learned alternative hypothesis using
F (i.e., AMD), and (2) testing both possible alternative hypotheses (denoted as AMD-B). (Part 1). The bold
denotes the highest mean test power.

ν 0.0 0.1 0.2 0.3 0.4

AMD 1.00 ± .000 .999 ± .001 .956 ± .012 .487 ± .071 .122 ± .021

AMD-B 1.00 ± .000 .997 ± .002 .934 ± .016 .379 ± .065 .068 ± .013

Table 7: MNIST: Test power vs ratio ν for two AMD tests: (1) with the learned alternative hypothesis using
F (i.e., AMD), and (2) testing both possible alternative hypotheses (denoted as AMD-B). (Part 2). The bold
denotes the highest mean test power.

ν 0.6 0.7 0.8 0.9 1.0

AMD .123 ± .016 .482 ± .091 .937 ± .030 1.00 ± .000 1.00 ± .000

AMD-B .079 ± .011 .390 ± .080 .904 ± .042 .999 ± .001 1.00 ± .000

Comparisons with testing both possible alternative hypotheses. Following the experimental setup
in Figure 1, we compare the test power of two AMD tests: (1) with the learned alternative hypothesis
using F (i.e., AMD), and (2) testing both possible alternative hypotheses (denoted as AMD-B). The
details of AMD-B are provided in Appendix C. From Tables 4, 5, 6 and 7, we can observe that the
original AMD test consistently achieves higher or comparable test power to AMD-B across a wide
range of ν values, particularly when ν is closer to 0.0 or 1.0, where the relative similarity relationship
is more pronounced and F is more likely to correctly identify true alternative hypothesis in Phase 1.

Table 8: Test power comparison of different methods in machine-generated text detection. The bold denotes the
highest mean test power.

Method UME SCHE LKI MMD-D MMD-H KLFI AMD
Test Power .791± .078 .874± .059 .839± .043 .917± .036 .869± .086 .897± .023 1.00± .000

Comparisons in machine-generated text detection. Following [6], we also conduct an experiment
showing that our AMD performs well in detecting machine-generated text compared to other baselines.
Specifically, we randomly draw sample from HC3 dataset, and assess whether the sample is machine-
generated by testing its relative similarity to human-written and machine-generated texts from the
TQA dataset. In this experiment, we set sample size to be 70. The test power results are shown in
Table 8, where AMD test achieves higher test power compared to baselines.
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Table 9: Test power comparison of different methods on MNIST and CIFAR10 under correct hypotheses (i.e.,
for baselines, the specified alternative hypothesis is correct; for AMD, the learned F is correct). The bold
denotes the highest mean test power.

Dataset MMD-D KLFI MMD-H UME SHCE LBI AMD

MNIST .772± .112 .897± .067 .300± .165 .785± .065 .793± .082 .710± .064 .968± .023

CIFAR10 .958± .076 .936± .042 .383± .181 .533± .049 .606± .069 .671± .129 .983± .017

Table 10: Test power comparison of different methods on MNIST and CIFAR10 under misspecified hypotheses
(i.e., for baselines, the specified alternative hypothesis is incorrect; for AMD, the learned F is incorrect).

Dataset MMD-D KLFI MMD-H UME SHCE LBI AMD

MNIST .006±.003 .011±.004 .018±.006 .005±.002 .047±.011 .007±.002 .001±.001

CIFAR10 .012±.003 .004±.002 .004±.002 .017±.004 .021±.004 .011±.007 .004±.002

Test power comparison under correct and misspecified hypotheses. Tables 9 and 10 compare the
test power of various relative similarity testing methods on MNIST and CIFAR10 under correctly
specified and misspecified hypotheses, respectively. Under the correct hypothesis setting (Table 9, i.e.,
for baselines, the specified alternative hypothesis is correct; for AMD, the learned F is correct), AMD
achieves the highest power on both datasets (0.968 on MNIST and 0.983 on CIFAR10), outperforming
all baseline methods by a substantial margin. In contrast, under hypothesis misspecification (Table 10,
i.e., for baselines, the specified alternative hypothesis is incorrect; for AMD, the learned F is
incorrect), all methods exhibit low test power and tend to accept the null hypothesis. As a result, the
relative similarity relationship is not evaluated at a statistically significant level, rendering the test
ineffective under such misspecification.

Table 11: MNIST: Test power vs. sample size m for two AMD tests: (1) the optimization is divided into two
separate cases: 1) d̂κ(Z,X, Y ) > 0; 2) d̂κ(Z,X, Y ) < 0 (i.e., the original AMD); (2) the squared form of test
statistic is directly optimized, i.e., d̂κ(Z,X, Y )2, and this method is denoted as AMD-SQ. The bold denotes the
highest mean test power. The bold denotes the highest mean test power.

m 130 160 190 220 250 280 310 340

AMD .277±.043 .409±.036 .604±.049 .761±.049 .779±.048 .827±.037 .867±.028 .969±.012

AMD-SQ .063±.021 .280±.078 .392±.055 .483±.014 .628±.078 .692±.048 .787±.092 .892±.064

Table 12: CIFAR10: Test power vs. sample size m for two AMD tests: (1) the optimization is divided into two
separate cases: 1) d̂κ(Z,X, Y ) > 0; 2) d̂κ(Z,X, Y ) < 0 (i.e., the original AMD); (2) the squared form of test
statistic is directly optimized, i.e., d̂κ(Z,X, Y )2, and this method is denoted as AMD-SQ. The bold denotes the
highest mean test power.

m 20 40 60 80 100 120 140 160

AMD .306 ±.038 .477 ±.026 .627 ±.044 .775 ±.021 .868 ±.017 .871 ±.028 .942 ±.009 .968 ±.007

AMD-SQ .286±.054 .452±.046 .591±.046 .713±.028 .821±.011 .834±.028 .914±.013 .957±.013

Comparison Between Original AMD and Squared-Form Optimization (AMD-SQ). Tables 11
and 12 present the test power of two AMD tests: (1) the optimization is divided into two separate
cases: 1)d̂κ(Z,X, Y ) > 0; 2)d̂κ(Z,X, Y ) < 0 (i.e., the original AMD); (2) the squared form of the
test statistic is directly optimized, i.e., d̂κ(Z,X, Y )2, and this method is denoted as AMD-SQ. The
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test power results are presented based on MNIST and CIFAR10 with respect to different sample sizes
m. In both datasets, the original AMD method consistently outperforms AMD-SQ. The performance
gap is particularly pronounced in the low-sample regime, which is because directly optimizing the
squared form of the test statistic, i.e., d̂κ(Z,X, Y )2, is highly sensitive to outliers or data points
with large values [30], especially in high-density regions. This can overshadow important patterns
in lower-density regions, potentially leading to an incomplete understanding of the data when the
sample size is limited.

Sample Size UME (s) SCHE (s) MMD-D (s) MMD-H (s) KLFI (s) AMD (s)
50 792.6 158.7 93.8 24.3 104.6 174.3
100 876.2 214.4 181.1 31.0 217.9 411.8
150 931.1 240.9 224.1 37.8 274.1 530.7
200 1230.6 292.6 345.9 44.4 386.0 693.2
250 1675.0 313.7 391.5 50.8 436.0 766.3
300 2077.2 365.7 457.8 57.5 546.9 902.4

Table 13: Runtime comparison (in seconds) with different sample sizes on MNIST.

Runtime Comparison. In the Table 13, we provide a runtime comparison of AMD against baseline
methods across different dataset scales on MNIST. AMD has higher time complexity than MMD-D,
KLFI, and similar baselines because it includes kernel optimization on augmented data. UME is
the most expensive method due to its feature selection step. In contrast, MMD-H is the fastest, as it
uses a simple heuristic without any optimization. As shown in Tables 1 and 2, and Figure 4, AMD
achieves high statistical power even with a relatively small sample size, significantly smaller than the
full dataset. This indicates that the increased time complexity and any potential loss in power are
generally acceptable in practice.
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Figure 7: The Type-I error is controlled around α = 0.05 w.r.t different regularization parameters for our AMD
and AMD-TS tests.
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Figure 8: Type-I error is controlled around α = 0.05 w.r.t different sample sizes for our AMD and the state-of-
the-art relative similarity tests.

Type-I error results. To conduct the experiments on Type-I error, we set U = 0.5P+ 0.5Q, which
indicates that the relative similarity relationship does not exist, i.e., P and Q are equally close to the
reference distribution U. Figure 8 demonstrates that the Type-I errors of both our AMD test and
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state-of-the-art relative similarity tests are consistently controlled around α = 0.05 across various
sample sizes in relative similarity testing. Similarly, Figure 7 illustrates that the Type-I errors for
our AMD and AMD-TS tests remain controlled around α = 0.05 across different regularization
parameters {10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104} and datasets.
These findings align well with the theoretical guarantees provided in Lemma 4. The p-values
presented in these Figures also align with the findings derived from the Type-I error results, providing
additional support for the effectiveness of our approach.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and Section 1 clearly outline the paper’s contribution and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Appendix A contains full proofs and assumptions of our theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Sections 5 and Appendix D detail the implementation to ensure reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Codes are available at: https://github.com/zhijianzhouml/AMD.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Sections 5 and Appendix D detail experimental settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run 1,000 repetitions to ensure statistical significance of the experimental
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix D details the computational resources required for reproduction.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research fully complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The study presents fundamental research without direct real-world deployment,
so societal impact is not applicable at this stage.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper presents no associated risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used are properly credited and comply with their respective licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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