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Abstract    Tree  models  have  made  an  impressive  progress
during  the  past  years,  while  an  important  problem  is  to
understand  how  these  models  predict,  in  particular  for  critical
applications such as finance and medicine. For this issue, most
previous works measured the importance of individual features.
In  this  work,  we  consider  the  interpretation  of  feature  groups,
which  is  more  effective  to  capture  intrinsic  structures  and
correlations  of  multiple  features.  We  propose  the Baseline
Group Shapley value (short  for BGShapvalue) to calculate the
importance  of  a  feature  group  for  tree  models.  We  further
develop a polynomial algorithm, BGShapTree, to deal with the
sum of exponential  terms in the BGShapvalue.  The basic  idea
is  to  decompose  the  BGShapvalue  into  leaves’ weights  and
exploit the relationships between features and leaves. Based on
this  idea,  we could greedily  search salient  feature  groups with
large BGShapvalues. Extensive experiments have validated the
effectiveness of our approach, in comparison with state-of-the-
art methods on the interpretation of tree models.

Keywords    interpretability, shapley  value, random  forests,
decision tree
 

1    Introduction
Past  years  have  witnessed  impressive  successes  for  tree
models  such  as  random  forests  [1],  XGBoost  [2],  and  deep
forests  [3],  while  it  is  always  accompanied  by  an  important
problem of understanding how these models make predictions.
Reliable  interpretations  could  uncover  models’ essence,  and
explain  their  performance;  this  is  particularly  necessary  for
some  critical  applications  such  as  finance,  medicine  and
autonomous driving [4–8].

Various  methods  have  been  proposed  to  measure  feature
importance for the interpretability of tree models.  Breiman et
al.  [9]  studied  feature  importance  based  on  the  impurity
reduction  during  the  process  of  splitting.  Strobl  et  al.  [10]
calculated  feature  importance  by  the  splitting  number  of  a
feature.  Louppe  et  al.  [11]  studied  impurity-based  feature
importance  for  tree  ensembles  in  asymptotic  sample

conditions.  Saabas  [12]  computed  feature  importance  by  the
changes  of  average  outputs  along  the  decision  path.
Kazemitabar et al. [13] established performance guarantees for
impurity-based  feature  importance  with  finite  samples.  Li  et
al.  [14]  also  analyzed  the  feature  selection  bias  of  impurity-
based methods.

The  Shapley  value  [15]  has  been  applied  to  interpret  tree
models  in  recent  years.  For  example,  Lundberg  et  al.  [16]
applied the Shapley value to present consistent interpretations
for  tree  models.  Some  studies  exploited  Shapley  values  to
explain XGBoost for various applications [17,18]. Sutera et al.
[19]  studied  the  relationships  between  Shapley  values  and
impurity  reduction.  Amoukou et  al.  [20]  proposed  a  more
accurate calculation of Shapley values for tree models.

Most studies concentrate on the interpretations of individual
features  for  tree  models  regardless  of  plentiful  correlations
among  features.  In  practice,  it  is  natural  to  present  some
interpretations  over  feature  groups.  Intuitively  speaking,  the
latter  is  more  effective  to  capture  intrinsic  structures  and
correlations among multiple features,  and this is  beneficial  to
understanding models’ predictions.

In  this  work,  we  study  baseline  Shapley  value  [21]  for  the
importance  of  feature  groups  on  tree  models,  which  presents
intuitive  interpretations  and  is  also  flexible  to  model  the
interpretation  context  w.r.t.  different  applications.  To  our
knowledge, this is the first extension of baseline Shapley value
to feature groups, and the main contributions of this work can
be summarized as follows:

●  Motivated  from game  theory,  we  propose  the Baseline
Group  Shapley  value (BGShapvalue)  to  quantify  the
importance  of  a  feature  group,  together  with  some
desirable  properties.  The  basic  idea  is  to  utilize  an
auxiliary  instance,  called  the baseline,  to  represent  the
absence  of  features.  This  is  different  from  previous
Shapley-value  approachs  for  trees  [16,20],  where  the
absence  of  features  is  modeled  by  the  expectation  of
model predictions under some fixed features [22].

● We further develop a polynomial approach BGShapTree
to  compute  BGShapvalues  for  tree  models.  The  basic
idea is to decompose the BGShapvalue into weights of
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leaves,  and  calculate  weights  by  exploiting  relations
between  features  and  leaves.  Based  on  this  approach,
we could greedily search salient feature groups of large
BGShapvalues.  Our  strategy  is  to  firstly  search  salient
feature  groups  with  relatively  small  sizes,  and  then
search larger salient feature groups iteratively.

●  We  finally  conduct  extensive  experiments  to  validate
the  effectiveness  of  our  approach.  To  be  specific,  our
approach  takes  significantly  better  performance  on
twenty benchmark datasets, and presents more intuitive
explanations on image data, compared with state-of-the-
art methods on interpreting tree models.

The  rest  of  this  work  is  organized  as  follows.  Section  2
presents  BGShapvalue  for  the  importance  of  a  feature  group
with  some  desirable  properties  of  interpretability.  Section  3
presents  our  polynomial  BGShapTree  approach  to  calculate
BGShapvalues for tree-based models, followed with a greedy
algorithm to  search salient  feature  groups.  Section 4  presents
related works. Section 5 presents some extensive experiments.
Section 6 concludes this work. 

2    Baseline group shapley value
X ⊆ Rd

[d] = {1,2, . . . ,d}
F : X→ R f ∈ F

I[·]
1 0

S |S |
[k] = {1,2, . . . ,k} k > 0 ∅

r > 0 ⌈r⌉
r

We  begin  with  some  notations  in  this  work.  Let 
denote  the  instance  space  with  feature  set .
Denote by  a model space, and assume that 
is  a  target  model  to  be  interpreted.  Let  be  the  indicator
function, which returns  if the input is true, and  otherwise.
For  set ,  we  use  to  denote  its  cardinality.  We  write

 for  integer ,  and  let  stand  for  the
empty  set.  For  real  number ,  let  be  the  smallest
integer not less than .

f
x∗ ∈ X

x′ ∈ X

x∗ x′

The  goal  of  this  work  is  to  explain  the  prediction  of  on
target instance . It is necessary to introduce an auxiliary
instance ,  called  the baseline,  to  model  the  absence  of
features.  For  simplicity,  we  suppress  the  dependency  on  the
choice of  and  when we write related functions.

T ⊆ [d]

Motivated  from  game  theory  [23,24],  we  introduce  the
Baseline Group Shapley Value (BGShapvalue) to quantify the
importance of a feature group  as follows:
 

ϕ f (T ) =
∑

S⊆[d]\T
p|T |d (|S |)( f (c(S ∪T ))− f (c(S ))

)
, (1)

p|T |d (k)where  is given by
 

p|T |d (k) =
k!(d− |T | − k)!
(d− |T |+1)!

, (2)

c(S ) = (x̂1, x̂2, . . . , x̂d)and  is defined as
 

x̂k =

 x∗k, for k ∈ S ,

x′k, for k ∈ [d] \S .
(3)

c(S )
x∗ x′

x′

Intuitively  speaking,  is  a  combination  of  target  instance
 and  baseline ,  which  models  features’ absence  by

switching their corresponding values to those of baseline .

T [d] \T d− |T |+1

T
T

From  the  view  of  game  theory,  we  could  regard  feature
group  and  other  features  in  as  players,
and  these  players  are  ordered  randomly.  BGShapvalue  then
essentially counts the average contribution of feature group 
to those players that precede  in the orderings.

f ∈ F g ∈ F

The  BGShapvalue  has  some  desirable  properties  of
interpretability  as  mentioned  in  [21,25].  For  independent
models  and , we have
 

ϕ f+g(T ) = ϕ f (T )+ϕg(T ) for any T ⊆ [d] .

This  is  known  as linearity  axiom,  which  helps  us  compute
BGShapvalues for ensembles efficiently.

T ⊆ [d] f (c(S ∪T )) = f (c(S ))
S ⊆ [d] \T

Given  feature  group ,  if  for
each , then we have
 

ϕ f (T ) = 0 .

This is known as dummy axiom, which could help us identify
feature groups with no contribution.

f ∈ F g ∈ F g(x) = f (x) x ∈ XGiven  and , if  for any , then
we have
 

ϕ f (T ) = ϕg(T ) for any T ⊆ [d] .

This is known as implementation invariance axiom, that is, we
provide  same  interpretations  for  two  identical  models  with
different implementations.

i, j ∈ [d] f (c(S ∪{i})) =
f (c(S ∪{ j})) S ⊆ [d] \ {i, j}

For  two  different  features ,  if 
 for every , then we have

 

ϕ f ({i}) = ϕ f ({ j}) ,
which is  known as symmetry  axiom.  This  axiom ensures  that
we  assign  identical  importance  values  for  two  symmetric
individual features.

i ∈ [d]For individual features , we also have
 ∑

i∈[d]

ϕ f ({i}) = f (x∗)− f (x′) .

f (x∗) f (x′)

This  is  known  as efficiency  axiom,  that  is,  the  sum  of
BGShapvalues for all individual features equals the difference
between  and .

U ⊆ [d]
f (c(S )) = f (c(S ∩U)) S ⊆ [d]

A  feature  group  is  said  to  be  a carrier if
 for any . We have carrier axiom

as  follows,  which  helps  us  identify  salient  feature  groups
without redundant features.

U T ⊆ [d]
ϕ f (T ) = ϕ f (T ∩U)

Lemma  1 For  any  carrier  and  feature  group ,  we
have .

UProof From carrier  and Eq. (1), we have
 

ϕ f (T ) =
∑

S⊆[d]\T
p|T |d (|S |)

(
f (c ((S ∪T )∩U))− f (c (S ∩U))

)
, (4)

and we similarly have
 

ϕ f (T ∩U) =
∑

S⊆[d]\(T∩U)

p|T∩U |
d (|S |)

(
f (c ((S ∪T )∩U))− f (c (S ∩U))

)
. (5)

S ∩U = (S ∪S ′)∩U S ′ ⊆ T \UNotice  that  for  every ,  and
this follows that
 

ϕ f (T ∩U) =
∑

S⊆[d]\T

∑
S ′⊆(T\U)

p|T∩U |
d (|S ∪S ′|)

(
f (c((S ∪T )∩U))− f (c(S ∩U))

)
. (6)
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k = |S ′| ∈ {0,1, . . . , |T \U |} S ⊆ [d] \TWe  set ,  and  for ,  we
have
 

ϕ f (T ∩U) =
∑

S⊆[d]\T

|T\U |∑
k=0

(
|T \U |

k

)
p|T∩U |

d (|S |+ k)

(
f (c((S ∪T )∩U))− f (c(S ∩U))

)
. (7)

Based on Proposition 1, we have
 

|T\U |∑
k=0

(
|S |+ k
|S |

)(
d− |T ∩U | − |S | − k

d− |T | − |S |

)
=

(
d− |T ∩U |+1

d− |T |+1

)
.

|T | = |T \U |+ |T ∩U |This follows that, from 
 

|T\U |∑
k=0

(
|T \U |

k

)(
d− |T |
|S |

)
=

(d− |T ∩U |+1)
(
d−|T∩U |
|S |+k

)
d− |T |+1

,

and we further have, from Eq. (2)
 

|T\U |∑
k=0

(
|T \U |

k

)
p|T∩U |

d (|S |+ k) = p|T |d (|S |) ,

ϕ f (T ) = ϕ f (T ∩U)which proves  from Eqs.  (4)  and (7).　　
　 　 　 　 　 　 　 　 　 　 　 　 　 　 　□

p,q nProposition 1 For non-negative integers  and , we have
 

n∑
k=0

(
p+ k

p

)(
q+n− k

q

)
=

(
p+q+n+1

p+q+1

)
.

Proof From generalized binomial theorem, we have
 

1
(1− x)p+q+2 =

∞∑
n=0

(
p+q+n+1

p+q+1

)
xn . (8)

On the other hand, we have
 

1
(1− x)p+1(1− x)q+1 =

∞∑
k=0

(
p+ k

p

)
xk
∞∑

k=0

(
q+ k

q

)
xk ,

and this follows that
 

1
(1− x)p+1(1− x)q+1 =

∞∑
n=0

n∑
k=0

(
p+ k

p

)(
q+n− k

q

)
xn ,

which completes the proof by Eq. (8)　　　　　　　　　□

The  baseline  Shapley  value  has  been  well-studied  over
individual features in previous works [21,26]. Another related
work is the conditional expectation Shapley value [22,27,28],
which  considered  the  expectation  of  model  predictions  under
some  fixed  features.  Sundararajan  and  Najmi  [21]  give  more
details  on  the  comparison  between  these  two  kinds  of
Shapley-value methods. 

3    Our BGShapTree approach
f

O(2dh)
f h

d

We  consider  a  single  axis-parallel  tree  predictor  as  our
target  model,  and our approach could be directly extended to
tree  ensembles  such  as  random  forests  according  to  linearity
axiom. From Eq. (1), we could observe the  time on the
calculation  of  BGShapvalue  for  tree  with  depth  and
feature  dimension ,  and  it  requires  high  computation

despecially  for  large .  For  this  problem,  our  solution  is  to
firstly decompose the BGShapvalue into weights over leaves,
and then explore the correlations between features and leaves. 

3.1    Decomposition of BGShapvalue
f m

m C1,C2, . . . ,Cm
C j d

I1, j, . . . , Id, j

We  assume  that  tree  predictor  has  leaves,  which  are
associated  with  rectangular  cells .  Each
rectangular  cell  can  be  further  expressed  by  intervals

 as follows:
 

C j = I1, j× · · ·× Id, j = {x = (x1, . . . , xd) : xk ∈ Ik, j} .
L j

C j [d] \L j

C j x∗ = (x∗1, . . . , x
∗
d)

x′ = (x′1, . . . , x
′
d)

Let  denote the set of features for splitting on the decision
path  of ,  and  features  from  are  irrelevant  to  the
construction of . Recall that target instance 
and baseline , and we have
 

x∗k ∈ Ik, j and x′k ∈ Ik, j for k ∈ [d] \L j . (9)
T j = T ∩L jDenote by , and it follows that

 

x∗k ∈ Ik, j and x′k ∈ Ik, j for k ∈ T \T j . (10)
r j f

C j j ∈ [m] r j = f (x)
x ∈C j x ∈ X

We  use  to  denote  the  output  of  model  over  the
rectangular  cell  for ,  that  is,  for  any

. For any , we have
 

f (x) =
∑
j∈[m]

r j× I[x ∈C j] . (11)

Based on Eq. (11), we could rewrite Eq. (1) as:
 

ϕ f (T ) =
∑
j∈[m]

w j,T × r j ,

w j,T jwhere  corresponds  to  the  weight  of  the th  leaf,  and  it
could be given by
 

w j,T =
∑

S⊆[d]\T
p|T |d (|S |)(I[c(S ∪T ) ∈C j]− I[c(S ) ∈C j]) .

{w j,T } j∈[m]This  remains  to  calculate  weights ,  and we present
an example to illustrate the decomposition of BGShapvalue.

d = 3 m = 4
x∗ = (0.4,0.2,0.6)

x′ = (0,0,0) T = {1,2}

Example Let feature dimension , and leaf number .
We  consider  target  instance  and  baseline

. For target group , we have
 

ϕ f (T ) = w1,T r1+w2,T r2+w3,T r3+w4,T r4 ,

w j,T j ∈ [4]where  for  could be calculated by 

w j,T = p2
3(0)(I[(0.4,0.2,0) ∈C j]− I[(0,0,0) ∈C j])

+ p2
3(1)(I[(0.4,0.2,0.6) ∈C j]− I[(0,0,0.6) ∈C j]) .

 

3.2    Calculation on weights of leaves
j C j

( j ∈ [m])
For  the th  leaf  and  corresponding  rectangular  cell 

, we first introduce two feature sets as:
 

A j = {k ∈ L j : x∗k ∈ Ik, j} , (12)
 

B j = {k ∈ L j : x′k ∈ Ik, j} . (13)
A j B j L j

x∗ x′ C j

Here,  and  denote  the  subsets  of  features  in ,  whose
values of  and  fall in the corresponding intervals of .

A j∪B j , L j k ∈ L j \ (A j∪B j)
x∗k < Ik, j x′k < Ik, j c(S ) <C j

If ,  then  there  is  a  such  that
 and .  This  follows  that  for  any

Fan XU et al.    Interpretation with baseline shapley value for feature groups on tree models 3



S ⊆ [d], and we have
 

w j,T = 0 . (14)
A j∪B j = L j

c(S ) ∈C j

For ,  we  introduce  a  necessary  and  sufficient
condition for ,  which plays  an important  role  in  the
subsequent analysis.

A j∪B j = L j c(S ) ∈C jTheorem 1 For , we have  if and only if
 

S = (A j \B j)∪S ′ with S ′ ⊆ D j , (15)
D j = (A j∩B j)∪ ([d] \L j)where .

c(S ) = (x̂1, x̂2, . . . , x̂d) ∈C jProof We  first  prove  when
Eq. (15) holds. Combining Eqs. (3) and (15), we have
 

x̂k =

{
x∗k, for k ∈ (A j \B j) ⊆ S ,
x′k, for k ∈ (B j \A j) ⊆ ([d] \S ) .

This follows that from Eqs. (12) and (13)
 

x̂k ∈ Ik, j for k ∈ (A j \B j)∪ (B j \A j) .
x̂k = x∗k x̂k = x′k k ∈ D jWe  also  have  or  for ,  and  this  yields

that
 

x̂k ∈ Ik, j for k ∈ D j

from Eqs. (9), (12) and (13). We finally have
 

x̂k ∈ Ik, j for k ∈ [d],

A j∪B j = L j c(S ) ∈C jfrom , which proves that .
c(S ) ∈C j

x̂k = x∗k k ∈ A j \B j
x′k < Ik, j A j \B j ⊆ S

If ,  then  we  have  for  from
. This follows that  from Eq. (3).

x̂k = x′k k ∈ B j \A jWe  similarly  have  for ,  and  this  could
yield that
 

B j \A j ⊆ [d] \S ,

from Eq. (3). Hence, we have
 

S = (A j \B j)∪S ′ with S ′ ⊆ [d] \ ((A j \B j)∪ (B j \A j)
)
.

A j∪B j = L jNotice that , and this follows that
 

S = (A j \B j)∪S ′ with S ′ ⊆ D j ,

which  completes  the  proof.　　　　　　　　　　　　□

A j,B j T j A j∪B j = L j

As shown in Fig. 1, it  is sufficient to discuss four cases for
 and  when :

T j ⊆ A j∩B j x∗k ∈ Ik, j x′k ∈ Ik, j● If ,  then we have  and  for

k ∈ T
I[c(S ∪T ) ∈C j] = I[c(S ) ∈C j] S ⊆ [d] \T

 from  Eqs.  (10),  (12)  and  (13).  Notice  that
 for ,  and  this

follows that
 

w j,T = 0 . (16)
T j ⊈ A j T j ⊈ B j k ∈ T j ⊆ T

x∗k < Ik, j

●  If  and ,  then  there  exists 
such  that  from  Eqs.  (12)  and  (13).  It  follows
that

 

c(S ∪T ) <C j for S ⊆ [d] \T .

(A j \B j) ⊈ S S ⊆ [d] \T
T j ⊈ B j c(S ) <C j

We  also  have  for  any  from
, and this yields that  from Theorem 1.

Hence, we finally have
 

w j,T = 0 . (17)
T j ⊆ A j T j ⊈ B j (A j \B j) ⊈ S

S ⊆ [d] \T c(S ) <C j

● If  and ,  then we have  for
every .  This  follows  that  from
Theorem 1, and we have

 

w j,T =
∑

S⊆[d]\T
p|T |d (|S |)I[c(S ∪T ) ∈C j] .

S ⊆ [d] \T c(S ∪T ) ∈C jIt  suffices  to  consider  with .
From Theorem 1, we have

 

S ∪T = (A j \B j)∪S ′ with S ′ ⊆ D j ,

S ⊆ [d] \Tand we also have, from ,
 

S = (A j \ (B j∪T j))∪S ′ with S ′ ⊆ (D j \T ) .

k = |S ′| τ = |D j \T |
(
τ
k

)
S ′

Write  and .  We  have  different
selections on , and obtain that

 

w j,T =

τ∑
k=0

(
τ

k

)
p|T |d (|A j \ (B j∪T j)|+ k) . (18)

T j ⊆ B j T j ⊈ A j
k ∈ T j ⊆ (S ∪T ) k ∈ B j \A j
c(S ∪T ) <C j

● If  and ,  then  there  exists
 such that . This follows that

, and we have
 

w j,T = −
∑

S⊆[d]\T
p|T |d (|S |)I[c(S ) ∈C j] .

S = (A j \B j)∪S ′

S ′ ⊆ (D j \T )
Similarly to Eq. (18), we have, from  with

,
 

w j,T = −
τ∑

k=0

(
τ

k

)
p|T |d (|A j \ (B j∪T j)|+ k) . (19)

 

 
A j,B j T j A j ∪B j = L j T j ⊆ A j ∩B j T j ⊈ A j and T j ⊈ B j T j ⊆ A j and T j ⊈ B j

T j ⊈ A j and T j ⊆ B j

Fig. 1    An illustration of four cases for  and  when .  (a) ;  (b) ;  (c) ;
(d) 
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O(d)
τ < d

O(md) ϕ f (T )
f m O(m+d)

{r j} j∈[m]
ϕ f (T )

In  Algorithm  1,  we  present  a  detailed  description  of  our
BGShapTree  approach.  It  is  observable  that  our  approach
takes  at  most  time  to  calculate  the  weight  of  one  leaf
since  in  Eqs.  (18)  and  (19).  We  finally  take  at  most

 running time to calculate  for a given tree model
 with  leaves.  Our  approach  also  takes  at  most 

memory  space  to  store  and  some  necessary  feature
sets for the calculation of .

{w j,T }

(d+1)2 {w j,T } 0 ⩽ τ ⩽ d
0 ⩽ |A j \ (B j∪T j)| ⩽ d f ∈ F x∗ ∈ X

In  practice,  we  could  speed  up  our  BGShapTree  approach
by  storing  some  weights  in  advance  if  we  aim  to
interpret multiple target instances. This is because there are at
most  selections  for  owing  to  and

 for  any  and .  For
simplicity, we introduce following notation:
 

q|T |d (u,v) =
u∑

k=0

(
u
k

)
p|T |d (v+ k) . (20)

Then Eqs. (18) and (19) could be rewritten as
 

w j,T = q|T |d (τ, |A j \ (B j∪T j)|) , (21)
 

w j,T = −q|T |d (τ, |A j \ (B j∪T j)|) . (22)

q|T |d (u,v)
0 ⩽ u,v ⩽ d w j,T

q|T |d (u,v)

From Eqs.  (21)  and  (22),  it  is  sufficient  to  obtain 
with  for  the  calculation  of .  We  present
following recursive relation when computing .

1 ⩽ u ⩽ d 0 ⩽ v ⩽ d−1Lemma 2 For integers  and , we have
 

q|T |d (u,v) = q|T |d (u−1,v)+q|T |d (u−1,v+1) .

Proof From Eq. (20), we have
 

q|T |d (u,v) =
u∑

k=0

(
u−1

k

)
p|T |d (v+ k)

+

u∑
k=0

(
u−1
k−1

)
p|T |d (v+ k) . (23)

On the other hand, we have
 

q|T |d (u−1,v) =
u−1∑
k=0

(
u−1

k

)
p|T |d (v+ k)

=

u∑
k=0

(
u−1

k

)
p|T |d (v+ k) , (24)

and we also have
 

q|T |d (u−1,v+1) =
u−1∑
k=0

(
u−1

k

)
p|T |d (v+1+ k)

=

u∑
k=0

(
u−1
k−1

)
p|T |d (v+ k) .

This completes the proof from Eqs. (23) and (24).　　　　　□

O(d2)
q|T |d (u,v) 0 ⩽ u ⩽ d 0 ⩽ v ⩽ d

O(mh)
ϕ f (T ) f

h m

From  Lemma  2,  we  could  take  at  most  time  to
compute  and  store  for  and  by
recursive  calculation.  After  storage,  it  remains  the 
running time to calculate the BGShapvalue  for tree  of
depth  since it suffices to scan the decision paths of  leaves. 

3.3    Search the salient feature group

T ⊆ [d]

2d

In  Algorithm  1,  we  present  an  efficient  calculation  on  the
BGShapvalue of  a  given feature  group .  In  many real
applications,  we  try  to  find  a  feature  group  of  the  largest
BGShapvalue,  which  is  called  the salient  feature  group.
Obviously, it is rather intractable to exactly search the salient
feature group from the total  feature subsets.

t−1 t

We  present  a  greedy  method  to  search  the  salient  feature
group  based  on  Algorithm  1.  Generally  speaking,  the  salient
feature  group  can  be  composed  of  important  groups  with
smaller  sizes,  and  we  can  firstly  search  salient  individual
features  and  search  larger  feature  groups  iteratively.  We
terminate  this  process  after  iterations,  where  is  a  pre-
defined  hyper-parameter  denoting  the  expected  size  of  the
output salient feature group.

P κ

P

We  introduce  a  list  of  size  to  store  potential  salient
feature  groups,  and  apply  Algorithm  1  on  each  individual
feature to initialize  as
 

P = {{k1}, . . . , {kκ}} , (25)
k1,k2, . . . ,kκ

κ
where  denote indices of  features with the largest

 BGShapvalues.
P′For  each iteration,  we first  construct  a  temporary  set  of
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extended feature groups as follows:
 

P′ = {T ∪{i} : T ∈ P, i ∈ [d] \T } . (26)
T ∈ P′

P κ

P t−1

We then calculate the BGShapvalue for each  based on
Algorithm 1, and update  with feature groups of the largest 
BGShapvalues.  We finally output the salient feature group in

 of the largest BGShapvalue after  iterations. Algorithm
2 presents the detailed descriptions for such process.

In  Algorithm  2,  we  could  speed  up  the  calculation  on
BGShapvalues  of  feature  groups  by  storing  some  important
variables. For simplicity, we introduce some notations as
 

u j,T = |D j \T | and v j,T = |A j \ (B j∪T j)| ,
w j,Twhich  play  important  roles  on  the  calculation  of 

according to Eqs. (21) and (22).
u j,T v j,T w j,T

T ′ = T ∪{i} u j,T ′ = u j,T −1
i ∈ (A j∩B j)∪ ([d] \L j) u j,T ′ = u j,T

v j,T ′ = v j,T −1 i ∈ A j \B j v j,T ′ = v j,T

We  could  store  and  when  computing .  For
extended  feature  group ,  we  have 
for ,  and  otherwise.  We
also  have  for ,  and 
otherwise.

A j∪B j = L j w j,T ′

T j i

From  Eq.  (14),  it  is  sufficient  to  consider  the  case  of
,  and  we  could  calculate  based  on  the

relation between  and  as:

T ′j ⊆ A j T ′j ⊈ B j T j ⊆ A j∩B j

i ∈ A j \B j T j ⊆ A j T j ⊈ B j
i ∈ A j∪ ([d] \L j)

● We  have  and  if  and
,  or  and  and

.  It  follows  that,  from  Eqs.  (18)  and
(21),

 

w j,T ′ = q|T
′ |

d (u j,T ′ ,v j,T ′ ) .

T ′j ⊆ B j T ′j ⊈ A j T j ⊆ A j∩B j

i ∈ B j \A j T j ⊈ A j T j ⊆ B j
i ∈ B j∪ ([d] \L j)

●  We  have  and  if  and
,  or  and  and

.  From  Eqs.  (19)  and  (22),  we  could
obtain that

 

w j,T ′ = −q|T
′ |

d (u j,T ′ ,v j,T ′ ) .

T ′j ⊆ A j∩B j T ′j ⊈ A j∧
T ′j ⊈ B j w j,T ′ = 0

● For  other  cases,  we  have  or 
.  It  follows  that  from  Eqs.  (16)  and

(17).

O(1) w j,T ′

u j,T v j,T O(m)
ϕ f (T ′)

Hence,  we  could  take  time  to  calculate  after
storing  and .  We  finally  take  at  most  running
time  to  compute ,  which  could  significantly  speed  up
the process of Algorithm 2.

d
O(md2)

O(md)

Algorithm  2  requires  calculating  BGShapvalues  of  all 
individual features, and we could observe the  time by
applying Algorithm 1 directly.  In practice,  we could improve
this to  level. Similarly to Algorithm 1, we have
 

w j,{i} =
∑

S⊆[d]\{i}
p{i}d (|S |)(I[c(S ∪{i}) ∈C j]− I[c(S ) ∈C j])

i ∈ [d] j ∈ [m] i < L jfor  and . For , we have
 

I[c(S ∪{i}) ∈C j] = I[c(S ) ∈C j] ,

w j,{i} = 0 w j,{i}
i ∈ L j A j∪B j = L j

w j,{i} = 0 i ∈ A j∩B j
i ∈ A j \B j

and  it  follows  that .  It  remains  to  calculate  for
. From Eq. (14), it is sufficient to study . We

first  have  for  from  Eq.  (16).  For
, we have

 

w j,{i} =
τ∑

k=0

(
τ

k

)
p{i}d (|A j \B j|+ k−1)

τ = |A j∩B j|+d− |L j| i ∈ B j \A jfrom  Eq.  (18),  where .  For ,
we similarly have
 

w j,{i} = −
τ∑

k=0

(
τ

k

)
p{i}d (|A j \B j|+ k)

τ = |A j∩B j|+d− |L j|from Eq. (19), where .

{w j,{i}}i∈[d]
O(d) O(md)

d
O(mh)

From the above discussion, we notice that there are at most
two different non-zero selections for , and they can
be computed in  time. This yields an  running time
to  calculate  the  BGShapvalues  for  all  individual  features.
This complexity can be further improved to  level after
we  calculate  and  store  different  weights  in  memory  as
described in Section 3.2. 

4    Related work
On  the  global  interpretation  of  tree  models  over  a  data  set,
Breiman  [9]  considered  the  reduction  of  impurity  during
splitting  as  the  measure  of  feature  importance.  Diaz  and
Alvarez [29] permuted the value of a feature and computed its
importance  by  observing  the  change  on  the  model’s  error.
Strobl  et  al.  [10]  derived  feature  importance  based  on  the
splitting number of  a  feature.  Along this  line,  much attention
has been paid on the interpretations of tree-based models from
both empirical [30–34] and theoretical views [14,35,36].

Sagi  and Rokach [37]  transformed complex tree  ensembles
into  interpretable  trees.  Tan  et  al.  [38]  used  representative
instances to interpret trees. Counterfactual interpretations have
also  been  presented  for  tree  models  [39–41].  Some  studies
presented  logical  methods  to  interpret  trees  [42–45]  and
Agarwal  et  al.  [46]  presented  a  regularization  to  improve  the
interpretability of tree models.

For  the  local  interpretation  of  tree  models  over  one  target
instance  (i.e.,  a  single  prediction),  Saabas  [12]  computed
feature importance according to the decision path of the target
instance. Several works used the Shapley value to interpret an
individual  prediction  for  tree  models  [16,20,47].  Sutera  et  al.
[19]  generalized  impurity  reduction  to  interpret  a  single
prediction. Besides, XGBoost has also been interpreted over a
single instance [17,18].

The Shapley value has played an important role towards the
interpretation of  other  models  such as  linear  models  [48–50],
kernel methods [51], deep neural networks [26,52–56], black-
box models  [57–64]  and so  on.  In  addition,  Wang et  al.  [65]
and  Beechey  et  al.  [66]  also  applied  Shapley  values  to
interpret  reinforcement  learning,  and  Ren  et  al.  [67]  applied
Shapley  values  to  interpret  adversarial  learning.  Chau  et  al.
[68] and Watson et al. [69] adopted Shapley values to explain
predictive uncertainty.

Theoretical  studies  have  been  presented  for  interpretation
methods based on Shapley values. Frye et al. [60] established
a  theoretical  framework  for  Shapley  values  to  incorporate
causal knowledge into interpretability. Sundararajan et al. [62]
established  the  relationships  between  Shapley  values  and
Taylor series. Janzing et al. [70] and Sundararajan and Najmi
[21]  compared  different  settings  of  Shapley-value  methods
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theoretically.  Several  studies  analyzed  the  drawbacks  of
Shapley  values  as  feature  importance  [71–73].  Van  den
Broeck  et  al.  [74]  analyzed  the  computational  complexity  of
some  Shapley-value  methods.  Bordt  and  von  Luxburg  [75]
also  studied  the  relationship  between  Shapley  values  and
generalized additive models.

Towards  the  interpretation  over  multiple  features,  Jullum
et al. [76] extended the conditional expectation Shapley value
to measure the importance of some pre-defined feature groups,
and  such  approach  has  been  applied  in  various  applications
[20,77,78].  Our  work  extends  the  baseline  Shapley  value  to
feature  groups,  which  presents  intuitive  interpretations  and is
flexible  to  model  the  explanation  context  with  respect  to
different applications as mentioned in previous study [21]. 

5    Experiments
In  this  section,  we  conduct  extensive  experiments  to  validate
the  effectiveness  of  our  approaches.  We  begin  with  some
experimental  settings,  and  followed  with  an  illustrative
example. We empirically compare our approach with state-of-
the-art  methods  on  the  interpretations  of  tree  ensembles,  and
show some interpretation visualization on image datasets. We
then  analyze  different  settings  of  our  approach.  We  finally
conduct additional experiments towards the interpretation of a
single decision tree. 

5.1    Experimental settings

[0,1]

In  this  work,  we  conduct  experiments  on  twenty  benchmark
datasets provided by OpenML [79] and UCI [80], and relevant
details are summarized in Table 1. Most of these datasets have
been applied in previous studies, and all the features have been
scaled to  for all datasets. For all interpreted tree models,
we adopt gini index as the splitting criterion.

We  compare  our  approach  with  six  state-of-the-art  tree-
specific  methods  on  the  interpretation  of  individual  features,
and  one  black-box  method  on  the  interpretation  of  feature
groups as follows:

● TreeSHAP: An interpretation method based on the esti-
mation of conditional expectation Shapley values [16];

●  ACVTree:  Another  interpretation  method  on  the  esti-
mation of conditional expectation Shapley values [20];

●  TreeInterpret:  An  interpretation  approach  on  the  chan-
ges  of  average  outputs  over  the  decision  path  for  the
target instance [12];

●  LocalMDI:  An  interpretation  approach  based  on  the
decrease of impurity on the decision path for the target
instance [19];

● GlobalMDI: An interpretation approach on the decrease
of impurity over all nodes [9];

●  SplitCount:  An  interpretation  approach  on  the  splitting
number of a feature [10];

●  GroupSHAP:  An  interpretation  method  based  on  the
extension of conditional expectation Shapley values for
feature groups [76];

We  focus  on  three  baselines  for  our  approach:  average
instance  over  the  training  data,  instance  of  all-zero  features
and  instance  of  all-one  features.  We  take  the  average

BGShapvalue over these baselines as our importance measure.
We implement  the LocalMDI method and the GroupSHAP

method  according  to  [19]  and  [76].  For  other  compared
methods,  we  take  the  default  parameter  settings  from  their
respective  references.  All  experiments  are  performed  with
Python 3 on an Intel Core i9-10900X processor. 

5.2    An illustrative example
We present an example to show different selections on salient
feature  groups  between our  method and other  methods  based
on  individual  features,  as  well  as  the  importance  of  our
selections.  For  simplicity,  we  take  TreeSHAP  as  a
representative  method  of  individual  features,  and  similar
results  could  also  be  observed  for  other  methods.  We train  a
random forest of 10 trees as our target model, and take a small
dataset diabetes with  binary  features  on  the  prediction  of
examples’ likelihood.

We aim to interpret the target instance with 91% likelihood
of  positive  label,  as  shown  in Fig. 2.  Our  approach  takes
different  selections  on  salient  feature  groups  compared  with
TreeSHAP when the group cardinality ranges from 3 to 5; this
is because our approach takes multiple features as an integral
part,  while  TreeSHAP measures  the importance of  individual
features independently.

We take the decrease of output likelihood (by setting zeros
to  salient  features)  as  a  metric  for  the  importance  of  salient
feature  groups,  similarly  to  [81].  As  shown  in Fig. 2,  our
selected  feature  groups  are  more  important  than  those  of
TreeSHAP;  for  example,  the  output  likelihood  decreases  by
66% after  setting  our  selected  features  as  zeros,  whereas  it
decreases by 58% for TreeSHAP. 

5.3    Experimental comparisons

100
t = ⌈0.3d⌉

κ = 10 P

t

For each dataset,  we train  10 random trees  as  our  interpreted
models, and randomly choose  test instances as the target
instances.  We  take  for  the  size  of  target  salient
feature  group.  For  GroupSHAP,  we  adopt  its  importance
measure into Algorithm 2 to search salient feature groups. We
also select parameter  for the length of list  as shown
in  Algorithm 2.  For  other  compared  methods  over  individual
features, we choose those features of the largest  importance
values as their selected salient feature groups.

[0,1]

We take the  test  accuracies  as  our  performance measure  to
evaluate  selected  salient  feature  groups,  and  maintain  the
salient  features  while  replace  all  non-salient  features  with
random  features  over  uniform  distribution  on ;  this  is
similar to the metrics in previous studies [16,82]. The final test

 

Table 1    Benchmark datasets

Datasets #inst #feat Datasets #inst #feat
Diabetes 520 16 Har 10,299 562
Australia 690 14 Pendigits 10,992 16
Vehicle 946 18 Drybean 13,661 16
Collins 1,000 23 Eggeye 14,980 14
Phishing 1,100 30 Magic04 19,020 10
Segment 2,310 19 Bank 45,200 16
Ginaprior 3,470 784 Shuttle 58,000 9
Texture 5,500 40 Sensor 58,509 48
Mushro 8,120 22 Mnist 60,000 784
Indian 9,144 220 Fmnist 60,000 784
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100accuracies are averaged over  random trials of non-salient
features, as summarized in Table 2.

From Table 2,  it  is  obviously  observable  that  our  approach
achieves  significantly  better  performance  than  other  methods
when  their  results  are  returned,  since  the  win/tie/loss  counts
clearly  show  that  our  approach  wins  for  most  datasets  and
never  losses.  Moreover,  our  approach  could  also  improve  at
least  3% of  test  accuracies  on  average  in  contrast  to  other
compared  methods.  An  intuitive  explanation  is  that  our
approach  tends  to  capture  intrinsic  structures  and  complex
correlations among features.

The  GroupSHAP  approach  does  not  return  any  result  on
most  datasets  after  running  out  72  hours  because  of  its
exponential  running-time  complexity  on  the  calculation  of
Shapley  values.  We could  also  observe  that  TreeSHAP takes
better  performance  than  other  methods  over  individual
features due to the desirable properties of Shapley values.

We  make  comparisons  on  different  cardinalities  of  salient

t ∈ [0.2d,0.6d]

t ∈ [0.8d,d]

feature  groups,  as  shown  in Fig. 3.  Here,  we  present  the
experimental results on six representative datasets, and similar
trends  could  be  observed  for  other  datasets.  As  shown  in
Fig. 3,  our  approach  generally  achieves  better  performance
than  other  compared  methods  when ,  which
indicates  that  our  approach  could  effectively  capture
correlations and structures among features in such range. It is
also  observable  that  our  approach  takes  comparable
performance  with  other  methods  as  for ,  since
most  important  features  have  been  selected  for  compared
methods in such range.

We also present  the  running time of  compared methods on
ten benchmark datasets in Fig. 4, and similar results could also
be  observed  on  other  datasets.  As  expected,  global  methods
GlobalMDI and SplitCount are the fastest methods, since they
are  independent  of  specific  instances.  Among  other  local
methods,  LocalMDI  and  TreeInterpret  take  relatively  low
computational  cost  because  they  only  need  to  scan  the

 

 
Fig. 2    Illustration of differences on salient feature groups between our approach and TreeSHAP (individual features)

  
± •

t 95%
Table  2    Comparisons  of  the  testing  accuracies  (mean std)  for  random  forests  classifiers.  indicates  that  our  approach  is  significantly  better  than  the
corresponding methods for the selections of salient feature groups (pairwise -test at  significance level). N/A means that the corresponding method does
not return results within 72 hours

Datasets Our approach TreeSHAP ACVTree TreeInterpret LocalMDI GlobalMDI SplitCount GroupSHAP
Diabetes ±.8382 .0331 ± •.7924 .0318 ± •.8155 .0293 ± •.8171 .0309 ± •.7933 .0287 ± •.8021 .0309 ± •.7629 .0298 N/A
Australia ±.8709 .0113 ± •.8591 .0189 N/A ± •.8517 .0174 ± •.7965 .0298 ± •.8180 .0317 ± •.5077 .0505 ± •.8602 .0248
Vehicle ±.6480 .0324 ± •.6276 .0303 N/A ± •.5961 .0376 ± •.5361 .0291 ± •.4334 .0407 ± •.2956 .0395 N/A
Collins ±.9126 .0178 ± •.8992 .0151 ± •.8848 .0208 ± •.8672 .0222 ± •.8258 .0291 ± •.7731 .0352 ± •.7822 .0302 N/A
Phishing ±.7573 .0219 ± •.7449 .0249 ±.7474 .0243 ± •.7428 .0243 ± •.7165 .0267 ± •.7333 .0312 ± •.4647 .0486 N/A
Segment ±.7864 .0282 ± •.7380 .0317 N/A ± •.6651 .0357 ± •.6487 .0034 ± •.6406 .0348 ± •.3941 .0420 N/A
Ginaprior ±.9198 .0029 ±.9184 .0014 N/A ± •.8056 .0264 ± •.8266 .0215 ± •.7621 .0253 ± •.6397 .0347 N/A
Texture ±.6884 .0390 ± •.6275 .0396 ± •5952 .0397 ± •.5815 .0410 ± •.5654 .0419 ± •.5114 .0445 ± •.4476 .0417 N/A
Mushro ±.9783 .0126 ±.9766 .0141 N/A ±.9782 .0146 ± •.9640 .0156 ± •.9195 .0223 ± •.8340 .0322 N/A
Indian ±.7806 .0348 ± •.6646 .0365 N/A ± •.7067 .0351 ± •.6823 .0390 ± •.5387 .0441 ± •.4908 .0435 N/A
Har ±.9796 .0020 ± •.9718 .0075 N/A ± •.9614 .0123 ± •.9580 .0097 ± •.6208 .0463 ± •.8058 .0330 N/A
Pendigits ±.6310 .0432 ± •.5655 .0426 ± •.5233 .0411 ± •.4769 .0454 ± •.4689 .0435 ± •.2770 .0392 ± •.1755 .0347 N/A
Drybean ±.5112 .0444 ±.5030 .0377 ± •.4487 .0407 ± •.4767 .0410 ± •.4665 .0439 ± •.4253 .0438 ± •.1488 .0.301 N/A
Eggeye ±.6579 .0337 ± •.5547 .0393 N/A ± •.5816 .0408 ± •.5123 .0348 ± •.5092 .0474 ± •.4971 .0232 ± •.6405 .0170
Magic04 ±.5447 .0413 ± •.5207 .0374 ± •.5172 .0396 ± •.4944 .0415 ± •.4737 .0339 ± •.4314 .0396 ± •.4540 .0362 ± •.5224 .0406
Bank ±.8356 .0271 ± •.8163 .0271 N/A ± •.8127 .0261 ±.8304 .0273 ± •.8089 .0282 ± •.8170 .0312 N/A
Shuttle ±.8524 .0267 ± •.7830 .0381 ± •.8038 .0387 ± •.7738 .0340 ± •.7397 .0351 ± •.7347 .0341 ± •.5970 .0389 ± •.8322 .0221
Sensor ±.9184 .0239 ± •.8886 .0256 N/A ± •.8391 .0284 ± •.8154 .0340 ± •.7089 .0408 ± •.6597 .0367 N/A
Mnist ±.9499 .0010 ±.9504 .0002 N/A ± •.8957 .0178 ± •.8490 .0214 ± •.8743 .0146 ± •.8703 .0187 N/A
Fmnist ±.8518 .0015 ± •.7529 .0146 N/A ± •.7239 .0129 ± •.7143 .0012 ± •.2732 .0217 ± •.2261 .0229 N/A
Average ±.7955 .1372 ±.7578 .1503 − ±.7324 .1518 ±.7092 .1551 ±.6298 .1891 ±.5435 .2203 −
Win/tie/loss 16/4/0 20/0/0 19/1/0 19/1/0 20/0/0 20/0/0 20/0/0
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decision  path  of  the  target  instance,  while  other  methods
require  traversing  all  leaves.  It  is  also  observable  that  our
approach  takes  less  running  time  than  ACVTree  and
GroupSHAP  for  all  datasets  as  these  two  methods  take
exponential running-time to calculate Shapley values. 

5.4    Interpretation visualization

10
t = 100

We  present  the  interpretation  visualization  on  two  image
datasets mnist and fmnist. We also consider random forests of

 random trees as our interpreted models. For simplicity, we
set  for the cardinality of salient feature groups.

Figure 5 visualizes  selected  salient  feature  groups.  It  is
evident  that  our  approach  makes  better  object  recognition
from  the  background,  and  present  consistent  interpretations
with  persons’ intuitions.  This  is  because  our  approach  pays
more  attention  to  the  structural  information  in  images,  rather
than independent individual pixels.

ACVTree and GroupSHAP do not return results in 72 hours
due  to  their  exponential  computational  cost.  LocalMDI  and
TreeInterpret  make  similar  interpretations  because  they  take
similar  measures  on  feature  importance  along  the  decision
path of the input instance. GlobalMDI and SplitCount may not

be  suitable  to  interpret  a  single  prediction  since  the  identical
result  is  returned  for  a  given  model,  regardless  of  different
target instances. 

κ5.5    Analysis on baseline and parameter 
κWe analyze different selections on baselines and parameter .

We also take random forests of 10 random trees as our target
models.  For  simplicity,  we  focus  on  three  typical  baseline
instances:  average instance over the training data,  instance of
all-zero  features  and  instance  of  all  ones  and  discuss  seven
combinations  of  them.  For  each  combination,  we  take  the
average  BGShapvalues  as  our  importance  measure,  and  then
search salient feature groups based on Algorithm 2.

Figure 6 shows  the  empirical  results  of  seven  different
combinations.  It  is  observable  that  our  approach  with  an
average of  three  baselines  outperforms other  combinations  in
most  datasets,  and  it  is  consistent  with  previous  empirical
results [64]. An intuitive explanation is that multiple baseline
instances  offer  a  more  comprehensive  and  robust  assessment
of  feature  importance  by  capturing  a  wider  range  of  feature
impact and variability.

κWe also analyze the influence of parameter , which stands
 

 

[0,1]
Fig. 3    Comparisons  on  the  selections  of  salient  feature  groups  with  different  cardinalities,  where  we  scale  the  cardinality  of  salient  feature
groups to . The higher the curve, the better the performance. (a) Diabetes; (b) texture; (c) pendigits; (d) eggeye; (e) magic04; (f) shuttle

 

 
Fig. 4    Comparisons of the running time on 10 benchmark datasets (in seconds).  Notice that  the y-axis is  in log-scale and full  black columns
imply that no result was obtained after running out 72 hours

Fan XU et al.    Interpretation with baseline shapley value for feature groups on tree models 9



P
κ [1,2,5,10,20,50]

κ κ ⩾ 5

κ = 10

for the size of temporary list  in Algorithm 2. For simplicity,
we  select  parameter  from  and Fig. 7
presents the empirical results over these selections. As can be
seen,  our  approach  is  not  sensitive  to  the  selection  of
parameter ,  and  it  generally  works  well  for  over  all
cardinalities of feature groups. This also confirms the validity
of our choice .
 

5.6    Interpretations of decision trees

100
t = ⌈0.3d⌉

We  have  already  validated  the  effectiveness  of  our  approach
on  the  interpretations  of  tree  ensembles,  and  this  section
makes additional experiments over a single decision tree. We
train a single decision tree classifier  as  our target  model,  and
randomly  choose  test  instances  as  the  target  instances.
Similarly  with  Section  5.3,  we  take  cardinality  of

target  salient  feature  group,  and  the  final  test  accuracies  are
averaged over 100 independent random trials,  as summarized
in Table 3.

4%

From Table 3,  we  could  easily  observe  that  our  approach
also  exhibits  better  performance  on  the  interpretation  of  a
single  tree  model  compared  with  other  methods,  as  the
win/tie/loss  counts  clearly  show  that  our  approach  wins  for
most datasets, yet only losses for sparse dataset ginaprior and
class-imbalanced  dataset shuttle.  Moreover,  our  approach
could  improve  at  least  of  test  accuracies  on  average  in
contrast  to  other  compared  methods.  This  indicates  that  our
approach could also capture correlations among features more
effectively than other methods when applied to a single tree.
 

 

 
Fig. 5    Comparisons of interpretation visualization between our approach and other compared methods

 

 
[0,1]Fig. 6    Comparisons on different baseline combinations, where we scale the cardinality of salient feature groups to . The higher the curve,

the better the performance. (a) Texture; (b) pendigits; (c) drybean

 

 
κ [0,1]Fig. 7    Comparisons on different parameter , where we scale the cardinality of salient feature groups to . The higher the curve, the better

the performance. (a) Texture; (b) pendigits; (c) drybean
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6    Conclusion
This  work  takes  one  step  on  the  interpretations  over  feature
groups  for  tree  models.  We first  propose  the  Baseline  Group
Shapley value (BGShapvalue) to quantify the importance of a
feature group for tree models. We then develop a polynomial
algorithm,  BGShapTree,  to  deal  with  the  sum of  exponential
terms in the BGShapvalue. Based on this approach, we further
greedily search salient feature groups to interpret tree models’
predictions.  This  work can be generalized to other  tree-based
models  such  as  XGBoost  and  deep  forests.  It  is  also
interesting  to  exploit  other  baseline  instances  and  efficient
algorithms  to  search  better  salient  feature  groups.  We  leave
these to future works. 
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